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Abstract

This paper describes an object oriented approach to the estimation of time series models us-
ing state space methods and presents an implementation in the Python programming language.
This approach at once allows for fast computation, a variety of out-of-the-box features, and
easy extensibility. We show how to construct a custom state space model, retrieve filtered and
smoothed estimates of the unobserved state, and perform parameter estimation using classical
and Bayesian methods. The mapping from theory to implementation is presented explicitly
and is illustrated at each step by the development of three example models: an ARMA(1,1)
model, the local level model, and a simple real business cycle macroeconomic model. Finally,
four fully implemented time series models are presented: SARIMAX, VARMAX, unobserved
components, and dynamic factor models. These models can immediately be applied by users.
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1 Introduction

The class of time series models that can be represented in state space form, allowing parameter esti-

mation and inference, is very broad. Many of the most widespread reduced form time series models
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fall into this class, including autoregressive integrated moving average (ARIMA), vector autore-

gressions (VARs), unobserved components (UC), time-varying parameters (TVP), and dynamic

factor (DFM) models. Furthermore, linear (or linearized) structural models are often amenable to

representation in this form, including the important case of linearized DSGE models. This paper

contributes to the literature on practical results related to the estimation of linear, Gaussian state

space models and the corresponding class of time series models.

The great advantage of representing a time series as a linear, Gaussian state space model is due

to existence of the celebrated Kalman filter (Kalman, 1960), which at once provides optimal con-

tempraneous estimates of unobserved state variables and also permits evaluation of the likelihood

of the model. Subsequent developments have produced a range of smoothers and computational

techniques which makes feasible a estimation even in the case of large datasets and complicated

models. Elegant theoretical results can be developed quite generically and applied to any of the

models in the state space class.

Mirroring this theoretical conservation of effort is the possibility of a practical conservation: appro-

priately designed computer programs that perform estimation and inference can be written gener-

ically in terms of the state space form and then applied to any of models which fall into that

class. Not only is it inefficient for each practitioner to separately implement the same features, it

is unreasonable to expect that everyone devote potentially large amounts of time to produce high-

performance, well-tested computer programs, particularly when their comparative advantage lies

elsewhere. This paper describes a method for achieving this practical conservation of effort by

making use of so-called object oriented programming, with an accompanying implementation in

the Python programming language.1

Time series analysis by state space methods is present in nearly every statistical software package,

including commercial packages like Stata and E-views, commercial compuational environments

such as MATLAB, and open-source programming languages including R and gretl. A recent spe-

1 Among others, the programming environments MATLAB and R also support object oriented programming; the
implementation described here could therefore, in principle, be migrated to those languages.
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cial volume of the Journal of Statistical Software was devoted to software implementations of state

space models; see Commandeur et al. (2011) for the introductory article and a list of references.

This is also not the first implementation of Kalman filtering and smoothing routines in Python; al-

though many packages at various stages of development exist, one notable reference is the PySSM

package presented in Strickland et al. (2014).

Relative to these libraries, this package has several important features. First, although several of the

libraries mentioned above (including the Python implementation) use object-oriented techniques

in their internal code, this is the first implementation to emphasize those techniques for users of

the library. As described throughout the paper, this can yield substantial time saving on the part of

users, by providing a unified interface to the state space model rather than a collection of disparate

functions.

Second, it is the first implementation to emphasize interaction with an existing ecosystem of

well-estabilished scientific libraries. Since state space estimation is a component of the larger

Statsmodels package (Seabold and Perktold, 2010), users automatically have available many other

econometric and statistical models and functions (in this way, Statsmodels is somewhat similar

to, for example, Stata). It also has links to other packages; for example, in section 6 we describe

Metropolis-Hastings posterior simulation using the Python package PyMC.

One practically important manifestation of the tighter integration of Statsmodels with the Python

ecosystem is that this package is easy to install and does not require the user to compile code

themselves (as does for example PySSM). Furthermore, while PySSM also uses compiled code

for the performance critical filtering and smoothing operations, in this package these routines are

written in a close variant of Python (see below for more details on “Cython”). This means that the

underlying code is easier to understand and debug and that a tighter integration can be achieved

between user-code and compiled-code.

Finally, it incorporates recent advances in state space model estimation, including the collapsed

filtering approach of Jungbacker and Koopman (2014), and makes available flexible classes for
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specifying and estimating four of the most popular time series models: SARIMAX, unobserved

components, VARMAX, and dynamic factor models.

One note is warranted about the Python code presented in this paper. In Python, most functionality

is provided by packages not necessarily loaded by default. To use these packages in your code,

you must first “import” them. In all the code that follows, we will assume the following imports

have already been made

import numpy as np
import pandas as pd
import statsmodels.api as sm

Any additional imports will be explicitly provided in the example code. In any code with simu-

lations we assume that the following code has been used to set the seed for the pseudo-random

number generator: np.random.seed(17429).

The remainder of the paper is as follows. Section 2 gives an overview of the linear, Gaussian state

space model along with the Kalman filter, state smoother, disturbance smoother, and simulation

smoother, and presents several examples of time series models in state space form. Section 3

describes the representation in Python of the state space model, and provides sample code for each

of the example models. Sections 4 and 5 describe the estimation of unknown system parameters by

maximum likelihood (MLE) and Markov chain Monte Carlo (MCMC) methods, respectively, and

show the application to the example models. Up to this point, the paper has been concerned with

the implementation of custom state space models. However Statsmodels also contains a number

of out-of-the-box models and these are described in section 6. Section 7 concludes.2

2 For instructions on the installation of this package, see Appendix A: Installation. Full documentation for the
package is available at http://www.statsmodels.org.
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Table 1: Elements of state space representation

Object Description Dimensions

𝑦𝑡 Observed data 𝑝× 1
𝛼𝑡 Unobserved state 𝑚× 1
𝑑𝑡 Observation intercept 𝑝× 1
𝑍𝑡 Design matrix 𝑝×𝑚
𝜀𝑡 Observation disturbance 𝑝× 1
𝐻𝑡 Observation disturbance covariance matrix 𝑝× 𝑝
𝑐𝑡 State intercept 𝑚× 1
𝑇𝑡 Transition matrix 𝑚×𝑚
𝑅𝑡 Selection matrix 𝑚× 𝑟
𝜂𝑡 State disturbance 𝑟 × 1
𝑄𝑡 State disturbance covariance matrix 𝑟 × 𝑟

2 State space models

The state space representation of a possibly time-varying linear and Gaussian time series model

can be written as

𝑦𝑡 = 𝑑𝑡 + 𝑍𝑡𝛼𝑡 + 𝜀𝑡 𝜀𝑡 ∼ 𝑁(0, 𝐻𝑡)

𝛼𝑡+1 = 𝑐𝑡 + 𝑇𝑡𝛼𝑡 +𝑅𝑡𝜂𝑡 𝜂𝑡 ∼ 𝑁(0, 𝑄𝑡)

where 𝑦𝑡 is observed, so the first equation is called the observation or measurement equation, and

𝛼𝑡 is unobserved. The second equation describes the transition of the unobserved state, and so

is called the transition equation. The dimensions of each of the objects, as well as the name by

which we will refer to them, are given in Table 1. All notation in this paper will follow that in

Commandeur et al. (2011) and Durbin and Koopman (2012).

The model is called time-invariant if only 𝑦𝑡 and 𝛼𝑡 depend on time (so, for example, in a time-

invariant model 𝑍𝑡 = 𝑍𝑡+1 ≡ 𝑍). In the case of a time-invariant model, we will drop the time

subscripts from all state space representation matrices. Many important time series models are

time-invariant, including ARIMA, VAR, unobserved components, and dynamic factor models.
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2.1 Kalman Filter

The Kalman filter, as applied to the state space model above, is a recursive formula running for-

wards through time (𝑡 = 1, 2, . . . , 𝑛) providing optimal estimates of the unknown state.3 At time

𝑡, the predicted quantities are the optimal estimates conditional on observations up to 𝑡 − 1, and

the filtered quantities are the optimal estimates conditional on observations up to time 𝑡. This will

be contrasted below with smoothed quantities, which are optimal estimates conditional on the full

sample of observations.

We now define some notation that will be useful below. Define the vector of all observations up to

time 𝑠 as 𝑌𝑠 = {𝑦1, . . . , 𝑦𝑠}. Then the distribution of the predicted state is 𝛼𝑡 | 𝑌𝑡−1 ∼ 𝑁(𝑎𝑡, 𝑃𝑡),

and the distribution of the filtered state is 𝛼𝑡 | 𝑌𝑡 ∼ 𝑁(𝑎𝑡|𝑡, 𝑃𝑡|𝑡).

As shown in, for example, Durbin and Koopman (2012), the Kalman filter applied to the model

(2) above yields a recursive formulation. Given prior estimates 𝑎𝑡, 𝑃𝑡, the filter produces optimal

filtered and predicted estimates (𝑎𝑡|𝑡, 𝑃𝑡|𝑡 and 𝑎𝑡+1, 𝑃𝑡+1, respectively) as follows

𝑣𝑡 = 𝑦𝑡 − 𝑍𝑡𝑎𝑡 − 𝑑𝑡 𝐹𝑡 = 𝑍𝑡𝑃𝑡𝑍
′
𝑡 +𝐻𝑡

𝑎𝑡|𝑡 = 𝑎𝑡 + 𝑃𝑡𝑍
′
𝑡𝐹

−1
𝑡 𝑣𝑡 𝑃𝑡|𝑡 = 𝑃𝑡 − 𝑃𝑡𝑍

′
𝑡𝐹

−1
𝑡 𝑍𝑡𝑃𝑡

𝑎𝑡+1 = 𝑇𝑡𝑎𝑡|𝑡 + 𝑐𝑡 𝑃𝑡+1 = 𝑇𝑡𝑃𝑡|𝑡𝑇
′
𝑡 +𝑅𝑡𝑄𝑡𝑅

′
𝑡

An important byproduct of the Kalman filter iterations is evaluation of the loglikelihood of the

observed data due to the so-called “prediction error decomposition”.

The dimensions of each of the objects, as well as the name by which we will refer to them, are given

in Table 2. Also included in the table is the Kalman gain, which is defined as 𝐾𝑡 = 𝑇𝑡𝑃𝑡𝑍
′
𝑡𝐹

−1
𝑡 .

3 In this paper, “optimal” can be interpreted in the sense of minimizing the mean-squared error of estimation. In
chapter 4, Durbin and Koopman (2012) show three other senses in which optimal can be defined for this same model.
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Table 2: Elements of Kalman filter recursions

Object Description Dimensions

𝑎𝑡 Prior state mean 𝑚× 1
𝑃𝑡 Prior state covariance 𝑚×𝑚
𝑣𝑡 Forecast error 𝑝× 1
𝐹𝑡 Forecast error covariance matrix 𝑝× 𝑝
𝑎𝑡|𝑡 Filtered state mean 𝑚× 1
𝑃𝑡|𝑡 Filtered state covariance matrix 𝑚×𝑚
𝑎𝑡+1 Predicted state mean 𝑚× 1
𝑃𝑡+1 Predicted state covariance matrix 𝑚×𝑚
log𝐿(𝑌𝑛) Loglikelihood scalar
𝐾𝑡 Kalman gain 𝑚× 𝑝

2.2 Initialization

Notice that since the Kalman filter is a recursion, for 𝑡 = 2, . . . , 𝑛 the prior state mean and prior

state covariance matrix are given as the output of the previous recursion. For 𝑡 = 1, however, no

previous recursion has been yet applied, and so the mean 𝑎1 and covariance 𝑃1 of the distribution

of the initial state 𝛼1 ∼ 𝑁(𝑎1, 𝑃1) must be specified. The specification of the distribution of the

initial state is referred to as initialization.

There are four methods typically used to initialize the Kalman filter: (1) if the distribution is known

or is otherwise specified, initialize with the known values; (2) initialize with the unconditional

distribution of the process (this is only applicable to the case of stationary state processes); (3) ini-

tialize with a diffuse (i.e. infinite variance) distribution; (4) initialize with an approximate diffuse

distribution, i.e. 𝑎1 = 0 and 𝑃1 = 𝜅𝐼 where 𝜅 is some large constant (for example 𝜅 = 106). When

the state has multiple elements, a mixture of these four approaches can be used, as appropriate.

Of course, if options (1) or (2) are available, they are preferred. In the case that there are non-

stationary components with unknown initial distribution, either (3) or (4) must be employed. While

(4) is simple to use, Durbin and Koopman (2012) note that “while the device can be useful for

approximate exploratory work, it is not recommended for general use since it can lead to large

rounding errors;” for that reason they recommend using exact diffuse initialiation. For more about

initialization, see Koopman and Durbin (2003) and chapter 5 of Durbin and Koopman (2012).
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Note that when diffuse initialization is applied, a number of initial loglikelihood values are ex-

cluded (“burned”) when calculating the joint loglikelihood, as they are considered under the influ-

ence of the diffuse states. In exact diffuse initialization the number of burned periods is determined

in initialization, but in the approximate case it must be specified. In this case, it is typically set

equal to the dimension of the state vector; it turns out that this often coincides with the value in the

exact case.

2.3 State and disturbance smoothers

The state and disturbance smoothers, as applied to the state space model above, are recursive

formulas running backwards through time (𝑡 = 𝑛, 𝑛− 1, . . . , 1) providing optimal estimates of the

unknown state and disturbance vectors based on the full sample of observations.

As developed in Koopman (1993) and Chapter 4 of Durbin and Koopman (2012), following an

application of the Kalman filter (yielding the predicted and filtered estimates of the state) the

smoothing recursions can be written as (where 𝐿𝑡 = 𝑇𝑡 −𝐾𝑡𝑍𝑡)

�̂�𝑡 = 𝑎𝑡 + 𝑃𝑡𝑟𝑡−1 𝑉𝑡 = 𝑃𝑡 − 𝑃𝑡𝑁𝑡−1𝑃𝑡

𝜀𝑡 = 𝐻𝑡𝑢𝑡 𝑉 𝑎𝑟(𝜀𝑡 | 𝑌𝑛) = 𝐻𝑡 −𝐻𝑡(𝐹
−1
𝑡 +𝐾 ′

𝑡𝑁𝑡𝐾𝑡)𝐻𝑡

𝜂𝑡 = 𝑄𝑡𝑅
′
𝑡𝑟𝑡 𝑉 𝑎𝑟(𝜂𝑡 | 𝑌𝑛) = 𝑄𝑡 −𝑄𝑡𝑅

′
𝑡𝑁𝑡𝑅𝑡𝑄𝑡

𝑢𝑡 = 𝐹−1
𝑡 𝑣𝑡 −𝐾 ′

𝑡𝑟𝑡

𝑟𝑡−1 = 𝑍 ′
𝑡𝑢𝑡 + 𝑇 ′

𝑡𝑟𝑡 𝑁𝑡−1 = 𝑍 ′
𝑡𝐹

−1
𝑡 𝑍𝑡 + 𝐿′

𝑡𝑁𝑡𝐿𝑡

The dimensions of each of the objects, as well as the name by which we will refer to them, are

given in Table 3.
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Table 3: Elements of state and disturbance smoother recursions

Object Description Dimensions

�̂�𝑡 Smoothed state mean 𝑚× 1
𝑉𝑡 Smoothed state covariance matrix 𝑚×𝑚
𝜀𝑡 Smoothed observation disturbance mean 𝑝× 1
𝑉 𝑎𝑟(𝜀𝑡 | 𝑌𝑛) Smoothed observation disturbance covariance matrix 𝑝× 𝑝
𝜂𝑡 Smoothed state disturbance mean 𝑚× 1
𝑉 𝑎𝑟(𝜂𝑡 | 𝑌𝑛) Smoothed state disturbance covariance matrix 𝑚×𝑚
𝑢𝑡 Smoothing error 𝑝× 1
𝑟𝑡−1 Scaled smoothed estimator 𝑚× 1
𝑁𝑡−1 Scaled smoothed estimator covariance matrix 𝑚×𝑚

Table 4: Output of the simulation smoother

Object Description Dimensions

�̃�𝑡 Simulated state 𝑚× 1
𝜀𝑡 Simulated observation disturbance 𝑝× 1
𝜂𝑡 Simulated state disturbance 𝑚× 1

2.4 Simulation smoother

The simulation smoother, developed in Durbin and Koopman (2002) and Chapter 4 of Durbin and

Koopman (2012), allows drawing samples from the distributions of the full state and disturbance

vectors, conditional on the full sample of observations. It is an example of a “forwards filtering,

backwards sampling” algorithm because one application of the simulation smoother requires one

application each of the Kalman filter and state / disturbance smoother. An often-used alternative

forwards filtering, backwards sampling algorithm is that of Carter and Kohn (1994).

The output of the simulation smoother is the drawn samples; the dimensions of each of the objects,

as well as the name by which we will refer to them, are given in Table 4.

2.5 Practical considerations

There are a number of important practical considerations associated with the implementation of the

Kalman filter and smoothers in computer code. Two of the most important are numerical stability

and computational speed; these issues are briefly described below, but will be revisited when the
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Python implementation is discussed.

In the context of the Kalman filter, numerical stability usually refers to the possibility that the

recursive calculations will not maintain the positive definiteness or symmetry of the various co-

variance matrices. Numerically stable routines can be used to mitigate these concerns, for example

using linear solvers rather than matrix inversion. In extreme cases a numerically stable Kalman

filter, the so-called square-root Kalman filter, can be used (see Morf and Kailath (1975) or chapter

6.3 of Durbin and Koopman (2012)).

Performance can be an issue because the Kalman filter largely consists of iterations (loops) and

matrix operations, and it is well known that loops perform poorly in interpreted languages like

MATLAB and Python.4 Furthermore, regardless of the high-level programming language used,

matrix operations are usually ultimately performed by the highly optimized BLAS and LAPACK li-

braries written in Fortran. For performant code, compiled languages are preferred, and code should

directly call the BLAS and LAPACK libraries directly when possible, rather than through interme-

diate functions (for details on the BLAS and LAPACK libraries, see Anderson et al. (1999)).

2.6 Additional remarks

Several additional remarks are merited about the Kalman filter. First, under certain conditions, for

example a time-invariant model, the Kalman filter will converge, meaning that the predicted state

covariance matrix, the forecast error covariance matrix, and the Kalman gain matrix will all reach

steady-state values after some number of iterations. This can be exploited to improve performance.

The second remark has to do with missing data. In the case of completely or partially missing

observations, not only can the Kalman filter proceed with making optimal estimates of the state

vector, it can provide optimal estimates of the missing data.

Third, the state space approach can be used to obtain optimal forecasts and to explore impulse

4 The availability of a just-in-time (JIT) compiler can help with loop performance in interpreted languages; one is
integrated into MATLAB, and the Numba project introduces one into Python.
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response functions.

Finally, the state space approach can be used for parameter estimation, either through classical

methods (for example maximum likelihood estimation) or Bayesian methods (for example poste-

rior simulation via Markov chain Monte Carlo). This will be described in detail in sections 4 and

5, below.

2.7 Example models

As mentioned above, many important time series models can be represented in state space form.

We present three models in detail to use as examples: an autoregressive moving average (ARMA)

model, the local level model, and a simple real business cycle (RBC) dynamic stochastic general

equilibrium (DSGE) model.

In fact, general versions of several time series models have already been implemented in Statsmod-

els and are available for use (see Out-of-the-box models for details). However, since the goal here

is to provide information sufficient for users to specify and estimate their own custom models,

we emphasize the translation of a model from state space formulation to Python code. Below we

present state space representations mathematically, and in subsequent sections we describe their

representation in Python code.

ARMA(1, 1) model

Autoregressive moving average models are widespread in the time series literature, so we will

assume the reader is familiar with their basic motivation and theory. Suffice it to say, these models

are often successfully applied to obtain reduced form estimates of the dynamics exhibited by time

series and to produce forecasts. For more details, see any introductory time series text.
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An ARMA(1,1) process (where we suppose 𝑦𝑡 has already been demeaned) can be written as

𝑦𝑡 = 𝜑𝑦𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1, 𝜀𝑡 ∼ 𝑁(0, 𝜎2)

It is well known that any autoregressive moving average model can be represented in state-space

form, and furthermore that there are many equivalent representations. Below we present one pos-

sible representation based on Hamilton (1994), with the corresponding notation from (2) given

below each matrix.

𝑦𝑡 =

[︂
1 𝜃1

]︂
⏟  ⏞  

𝑍

⎡⎢⎣𝛼1,𝑡

𝛼2,𝑡

⎤⎥⎦
⏟  ⏞  

𝛼𝑡⎡⎢⎣𝛼1,𝑡+1

𝛼2,𝑡+1

⎤⎥⎦ =

⎡⎢⎣𝜑 0

1 0

⎤⎥⎦
⏟  ⏞  

𝑇

⎡⎢⎣𝛼1,𝑡
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𝑅
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One feature of ARMA(p,q) models generally is that if the assumption of stationarity holds, the

Kalman filter can be initialized with the unconditional distribution of the time series.

As an application of this model, in what follows we will consider applying an ARMA(1,1) model to

inflation (first difference of the logged US consumer price index). This data can be obtained from

the Federal Reserve Economic Database (FRED) produced by the Federal Reserve Bank of St.

Louis. In particular, this data can be easily obtained using the Python package pandas-datareader.5

from pandas_datareader.data import DataReader
cpi = DataReader('CPIAUCNS', 'fred', start='1971-01', end='2016-12')
cpi.index = pd.DatetimeIndex(cpi.index, freq='MS')
inf = np.log(cpi).resample('QS').mean().diff()[1:] * 400

5 This is for illustration purposes only, since an ARMA(1, 1) model with mean zero is not a good model for
quarterly CPI inflation.
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Fig. 1 shows the resulting time series.

Fig. 1: Time path of US CPI inflation from 1971:Q1 - 2016:Q4.

Local level model

The local level model generalizes the concept of intercept (i.e. “level”) in a linear regression to

be time-varying. Much has been written about this model, and the second chapter of Durbin and

Koopman (2012) is devoted to it. It can be written as

𝑦𝑡 = 𝜇𝑡 + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0, 𝜎2
𝜀)

𝜇𝑡+1 = 𝜇𝑡 + 𝜂𝑡, 𝜂𝑡 ∼ 𝑁(0, 𝜎2
𝜂)

This is already in state space form, with 𝑍 = 𝑇 = 𝑅 = 1. This model is not stationary (the

unobserved level follows a random walk), and so stationary initialization of the Kalman filter is

impossible. Diffuse initialization, either approximate or exact, is required.

As an application of this model, in what follows we will consider applying the local level model

to the annual flow volume of the Nile river between 1871 and 1970. This data is freely available

from many sources, and is included in many econometrics analysis packages. Here, we use the

data from the Python package Statsmodels.
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nile = sm.datasets.nile.load_pandas().data['volume']
nile.index = pd.date_range('1871', '1970', freq='AS')

Fig. 2 shows the resulting time series.

Fig. 2: Annual flow volume of the Nile river 1871 - 1970.

Real business cycle model

Linearized models can often be placed into state space form and evaluated using the Kalman filter.

A very simple real business cycle model can be represented as6

⎡⎢⎢⎢⎢⎣
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0
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where 𝑦𝑡 is output, 𝑛𝑡 is hours worked, 𝑐𝑡 is consumption, 𝑘𝑡 is capital, and 𝑧𝑡 is a technology

shock process. In this formulation, output, hours worked, and consumption are observable whereas

the capital stock and technology process are unobserved. This model can be developed as the

6 Note that this simple RBC model is presented for illustration purposes and so we aim for brevity and clarity of
exposition rather than a state-of-the-art description of the economy.
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linearized output of a fully microfounded DSGE model, see for example Ruge-Murcia (2007) or

DeJong and Dave (2011). In the theoretical model, the variables are assumed to be stationary.

There are six structural parameters of this RBC model: the discount rate, the marginal disutility of

labor, the depreciation rate, the capital-share of output, the technology shock persistence, and the

technology shock innovation variance. It is important to note that the reduced form parameters of

the state space representation (for example 𝜑𝑦𝑘) are complicated and non-linear functions of these

underlying structural parameters.

The raw observable data can be obtained from FRED, although it must be transformed to be con-

sistent with the model (for example to induce stationarity). For an explanation of the datasets used

and the transformations, see either of the two references above.

from pandas_datareader.data import DataReader
start = '1984-01'
end = '2016-09'
labor = DataReader('HOANBS', 'fred',start=start, end=end).resample('QS').first()
cons = DataReader('PCECC96', 'fred', start=start, end=end).resample('QS').first()
inv = DataReader('GPDIC1', 'fred', start=start, end=end).resample('QS').first()
pop = DataReader('CNP16OV', 'fred', start=start, end=end)
pop = pop.resample('QS').mean() # Convert pop from monthly to quarterly observations
recessions = DataReader('USRECQ', 'fred', start=start, end=end)
recessions = recessions.resample('QS').last()['USRECQ'].iloc[1:]

# Get in per-capita terms
N = labor['HOANBS'] * 6e4 / pop['CNP16OV']
C = (cons['PCECC96'] * 1e6 / pop['CNP16OV']) / 4
I = (inv['GPDIC1'] * 1e6 / pop['CNP16OV']) / 4
Y = C + I

# Log, detrend
y = np.log(Y).diff()[1:]
c = np.log(C).diff()[1:]
n = np.log(N).diff()[1:]
i = np.log(I).diff()[1:]
rbc_data = pd.concat((y, n, c), axis=1)
rbc_data.columns = ['output', 'labor', 'consumption']

Fig. 3 shows the resulting time series.

2.8 Parameter estimation

In order to accomodate parameter estimation, we need to introduce a couple of new ideas, since

the generic state space model described above considers matrices with known values. In particular
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Fig. 3: US output, labor, and consumption time series 1984:Q1 - 2016:Q4.

(following the notation in Chapter 7 of Durbin and Koopman (2012)), suppose that the unknown

parameters are collected into a vector 𝜓. Then each of the state space representation matrices can

be considered as, and written as, a function of the parameters. For example, to take into account

the dependence on the unknown parameters, we write the design matrix as 𝑍𝑡(𝜓).

The three methods for parameter estimation considered in this paper perform filtering, smoothing,

and / or simulation smoothing iteratively, where each iteration has a (generally) different set of

parameter values. Given this iterative approach, it is clear that in order to perform parameter

estimation we will need two new elements: first, we must have the mappings from parameter values

to fully specified system matrices; second, the iterations must begin with some initial parameter

values and these must be specified.

The first element has already been introduced in the three examples above, since the state space

matrices were written with known values (such as 1 and 0) as well as with unknown parameters

(for example 𝜑 in the ARMA(1,1) model). The second element will be described separately for

each of parameter estimation methods, below.

3 Representation in Python

The basic guiding principle for us in translating state space models into Python is to allow users

to focus on the specification aspect of their model rather than on the machinery of efficient and

accurate filtering and smoothing computation. To do this, we apply the programmatic technique of
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object oriented programming (OOP). While a full description and motivation of OOP is beyond the

scope of this paper, one of the primary benefits for our purposes is that it facilitates organization

and prevents the writing and rewriting of the same or similar code. This feature is quite attractive

in general, but as will be shown below, state space models fit particularly well into - and reap sub-

stantial benefits from - the object oriented paradigm. For state space models, filtering, smoothing,

a large part of parameter estimation, and some postestimation results are standard; they depend

only on the generic form of the model given in (2) rather than the specializations found in, for

example, (2.7), (2.7), and (2.7)).

The Python programming language is general-purpose, interpreted, dynamically typed, and high-

level. Relative to other programming languages commonly used for statistical computation, it has

both strengths and weaknesses. It lacks the breadth of available statistical routines present in the

R programming language, but instead features a core stack of well-developed scientific libraries.

Since it began life as a general purpose programming language, it lacks the native understanding of

matrix algebra which makes MATLAB so easy to begin working with (these features are available,

but are provided by the the Numeric Python (NumPy) and Scientific Python (SciPy) libraries) but

it has more built-in features for working with text, files, web sites, and more. All of Python, R, and

MATLAB feature excellent graphing and plotting features and the ability to integrate compiled

code for faster performance.

Of course, anything that can be done in one language can in principle be done in many others,

so familiarity, style, and tradition play a substantial role in determining which language is used in

which discipline. There is much to recommend R, MATLAB, Stata, Julia, and other languages.

Nonetheless, it is hoped that this paper will not only show how state space models can be specified

and estimated in Python, but also introduce some of the powerful and elegent features of Python

that make it a strong candidate for consideration in a wide variety of statistical computing projects.
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3.1 Object oriented programming

What follows is a brief description of the concepts of object oriented programming. The content

follows Wegner (1990), which may be consulted for more detail. The Python Language Reference

may be consulted for details on the implementation and syntax of object oriented programming

specific to Python.

Objects are “collections of operations that share a state” (Wegner, 1990). Another way to put it is

that objects are collections of data (the “state”) along with functions that manipulate or otherwise

make use of that data (the “operations”). In Python, the data held by an object are called its

attributes and the operations are called its methods. An example of an object is a point in the

Cartesian plane, where we define the “state” of the point as its coordinates in the plane and define

two methods, one to change its 𝑥-coordinate to 𝑥 + 𝑑𝑥, and one to change the 𝑦-coordinate to

𝑦 + 𝑑𝑦.

Classes are “templates from which objects can be created ... whereas the [attributes of an] object

represent actual variables, class [attributes] are potential, being instantiated only when an object is

created” (Ibid.). The point object described above could be written in Python code as follows. First,

a Point class is defined, providing the template for all actual points that will later be represented.

# This is the class definition. Object oriented programming has the concept
# of inheritance, whereby classes may be "children" of other classes. The
# parent class is specified in the parentheses. When defining a class with
# no parent, the base class `object` is specified instead.
class Point(object):

# The __init__ function is a special method that is run whenever an
# object is created. In this case, the initial coordinates are set to
# the origin. `self` is a variable which refers to the object instance
# itself.
def __init__(self):

self.x = 0
self.y = 0

def change_x(self, dx):
self.x = self.x + dx

def change_y(self, dy):
self.y = self.y + dy

With the template defined, we can create as many Point objects (instantiations of the Point
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template), with actual data, as we like. Below, point_object holds an actual instance of a point

with coordinates first at (0, 0) and then at (−2, 0).

# An object of class Point is created
point_object = Point()

# The object exposes it's attributes
print(point_object.x) # 0

# And we can call the object's methods
# Notice that although `self` is the first argument of the class method,
# it is automatically populated, and we need only specify the other
# argument, `dx`.
point_object.change_x(-2)
print(point_object.x) # -2

Object oriented programming allows code to be organized hierarchically through the concept of

class inheritance, whereby a class can be defined as an extension to an existing class. The existing

class is called the parent and the new class is called the child. Wegner (1990) writes “inheritance

allows us to reuse the behavior of a class in the definition of new classes. Subclasses of a class

inherit the operations of their parent class and may add new operations and new [attributes]”.

Through the mechanism of inheritance, a parent class can be defined with a set of generic function-

ality, and then many child classes can subsequently be defined with specializations. Each child thus

contains both the generic functionality of the parent class as well as its own specific functionality.

Of course the child classes may have children of their own, and so on.

As an example, consider creating a new class describing vectors in R2. Since a vector can be

described as an ordered pair of coordinates, the Point class defined above could also be used

to describe vectors and allow users to modify the vector using the change_x and change_y

methods. Suppose that we wanted to add a method to calculate the length of the vector. It would

not make sense to add a length method to the Point class, since a point does not have a length, but

we can create a new Vector class extending the Point class with the new method. In the code

below, we also introduce arguments into the class constructor (the __init__ method).
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# This is the new class definition. Here, the parent class, `Point`, is in
# the parentheses.
class Vector(Point):

def __init__(self, x, y):
# Call the `Point.__init__` method to initialize the coordinates
# to the origin
super(Vector, self).__init__()

# Now change to coordinates to those provided as arguments, using
# the methods defined in the parent class.
self.change_x(x)
self.change_y(y)

def length(self):
# Notice that in Python the exponentiation operator is a double
# asterisk, "**"
return (self.x**2 + self.y**2)**0.5

# An object of class Vector is created
vector_object = Vector(1, 1)
print(vector_object.length()) # 1.41421356237

Returning to state space models and Kalman filtering and smoothing, the object oriented approach

allows for separation of concerns and prevents duplication of effort. The base classes contain

the functionality common to all state space models, in particular Kalman filtering and smoothing

routines, and child classes fill in model-specific parameters into the state space representation

matrices. In this way, users need only specify the parts that are absolutely necessary and yet the

classes they define contain full state space operations. In fact, many additional features beyond

filtering and smoothing are available through the base classes, including methods for estimation of

unknown parameters, summary tables, prediction and forecasting, model diagnostics, simulation,

and impulse response functions.

3.2 Representation

In this section we present a prototypical example in which we create a subclass specifying a par-

ticular model. That subclass then inherits state space functionality from its parent class. Tables

detailing the attributes and methods that are available through inheritance of the parent class are

provided in Appendix B: Inherited attributes and methods.

The parent class is sm.tsa.statespace.MLEModel (referred to as simply MLEModel in what
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follows), and it provides an interface to the state space functionality described above. Subclasses

are required to specify the state space matrices of the model they implement (i.e. the elements from

Table 1) and in return they receive a number of built-in functions that can be called by users. The

most important of these are update, loglike, filter, smooth, and simulation_smoother.

The first, update, accepts as arguments parameters of the model (for example the 𝜑 autoregressive

parameter of the ARMA(1, 1) model) and updates the underlying state space system matrices with

those parameters. Note that the second, third, and fourth methods, described just below, implicitly

call update as part of their operation.

The second, loglike, performs the Kalman filter recursions and returns the joint loglikelihood

of the sample. The third, filter, performs the Kalman filter recursions and returns an object

holding the full output of the filter (see Table 2), as well as the state space representation (see

Table 1). The fourth, smooth, performs Kalman filtering and smoothing recursions and returns an

object holding the full output of the smoother (see Table 3) as well as the filtering output and the

state space representation. The last, simulation_smoother, creates a new object that can be

used to create an arbitrary number of simulated state and disturbance series (see Table 4).

The first four methods - update, loglike, filter, and smooth - require as their first ar-

gument a parameter vector at which to perform the operation. They all first update the state

space system matrices, and then the latter three perform the appropriate additional operation. The

simulation_smoother method does not require the parameter vector as an argument, since it

performs simulations based on whatever parameter values have been most recently set, either by

one of the other three methods or by the update method.

As an example of the use of this class, consider the following code, which constructs a local level

model for the Nile data with known parameter values (the next section will consider parameter

estimation) and then applies the above methods. Recall that to fully specify a state space model, all

of the elements from Table 1 must be set and the Kalman filter must be initialized. For subclasses

of MLEModel, all state space elements are created as zero matrices of the appropriate shapes; often
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only the non-zero elements need be specified.7

# Create a new class with parent sm.tsa.statespace.MLEModel
class LocalLevel(sm.tsa.statespace.MLEModel):

# Define the initial parameter vector; see update() below for a note
# on the required order of parameter values in the vector
start_params = [1.0, 1.0]

# Recall that the constructor (the __init__ method) is
# always evaluated at the point of object instantiation
# Here we require a single instantiation argument, the
# observed dataset, called `endog` here.
def __init__(self, endog):

super(LocalLevel, self).__init__(endog, k_states=1)

# Specify the fixed elements of the state space matrices
self['design', 0, 0] = 1.0
self['transition', 0, 0] = 1.0
self['selection', 0, 0] = 1.0

# Initialize as approximate diffuse, and "burn" the first
# loglikelihood value
self.initialize_approximate_diffuse()
self.loglikelihood_burn = 1

# Here we define how to update the state space matrices with the
# parameters. Note that we must include the **kwargs argument
def update(self, params, **kwargs):

# Using the parameters in a specific order in the update method
# implicitly defines the required order of parameters
self['obs_cov', 0, 0] = params[0]
self['state_cov', 0, 0] = params[1]

# Instantiate a new object
nile_model_1 = LocalLevel(nile)

Three elements of the above code merit discussion. First, we have included a class attribute

start_params, which will later be used by the model when performing maximum likelihood

estimation.8 Second, note that the signature of the update method includes **kwargs as an ar-

gument. This allows it to accept an arbitrary set of keyword arguments, and this is required to

allow handling of parameter transformations (discussed below). It is important to remember that

in all subclasses of MLEModel, the update method signature must include **kwargs.

Second, the state space representation matrices are set using so-called “slice notation”, such as

7 More specifically, potentially time-varying matrices are created as zero matrices of the appropriate non-time-
varying shape. If a time-varying matrix is required, the whole matrix must be re-created in the appropriate time-varying
shape before individual elements may be modified.

8 It may seem restrictive to require the initial parameter value to be a a class attribute, which is set to a specific
value. In practice, the attribute can be replaced with a class property, allowing dynamic creation of the attribute’s value.
In this way the initial parameter vector for an ARMA(p,q) model could, for example, be generated using ordinary least
squares.
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self[’design’], rather than the so-called “dot notation” that is usually used for attribute and

method access, such as self.loglikelihood_burn. Although it is possible to access and set

state space matrices and their elements using dot notation, slice notation is strongly recommended

for technical reasons.9 Note that only the state space matrices can be set using slice notation (see

Table 9 for the list of attributes that can be set with slice notation).

This class LocalLevel fully specifies the local level state space model. At our disposal now are

the methods provided by the parent MLEModel class. They can be applied as follows.

First, the loglike method returns a single number, and can be evaluated at various sets of param-

eters.

# Compute the loglikelihood at values specific to the nile model
print(nile_model_1.loglike([15099.0, 1469.1])) # -632.537695048

# Try computing the loglikelihood with a different set of values; notice that it is different
print(nile_model_1.loglike([10000.0, 1.0])) # -687.5456216

The filter method returns an object from which filter output can be retrieved.

# Retrieve filtering output
nile_filtered_1 = nile_model_1.filter([15099.0, 1469.1])
# print the filtered estimate of the unobserved level
print(nile_filtered_1.filtered_state[0]) # [ 1103.34065938 ... 798.37029261 ]
print(nile_filtered_1.filtered_state_cov[0, 0]) # [ 14874.41126432 ... 4032.15794181 ]

The smooth method returns an object from which smoother output can be retrieved.

# Retrieve smoothing output
nile_smoothed_1 = nile_model_1.smooth([15099.0, 1469.1])
# print the smoothed estimate of the unobserved level
print(nile_smoothed_1.smoothed_state[0]) # [ 1107.20389814 ... 798.37029261 ]
print(nile_smoothed_1.smoothed_state_cov[0, 0]) # [ 4015.96493689 ... 4032.15794181 ]

Finally the simulation_smoother method returns an object that can be used to simulate state

9 The difference between self[’design’, 0, 0] = 1 and self.design[0,0] = 1 lies in the
order of operations. With dot notation (the latter example) first the self.design matrix is accessed and then
the [0,0] element of that matrix is accessed. With slice notation, a class method (__setitem__) is given the
matrix name and the [0,0] element simultaneously. Usually there is no difference between the two approaches, but, for
example, if the matrix in question has a floating point datatype and the new value is a complex number, then only the
real component of that new value will be set in the matrix and a warning will be issued. This problem does not occur
with the slice notation.
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or disturbance vectors via the simulate method.

# Retrieve a simulation smoothing object
nile_simsmoother_1 = nile_model_1.simulation_smoother()

# Perform first set of simulation smoothing recursions
nile_simsmoother_1.simulate()
print(nile_simsmoother_1.simulated_state[0, :-1]) # [ 1000.09720165 ... 882.30604412 ]

# Perform second set of simulation smoothing recursions
nile_simsmoother_1.simulate()
print(nile_simsmoother_1.simulated_state[0, :-1]) # [ 1153.62271051 ... 808.43895425 ]

Fig. 4 plots the observed data, filtered series, smoothed series, and the simulated level from ten

simulations, generated from the above model.

Fig. 4: Filtered and smoothed estimates and simulatations of unobserved level for Nile data.

3.3 Additional remarks

Once a subclass has been created, it has access to a variety of features from the base (parent)

classes. A few remarks about available features are merited.

First, if the model is time-invariant, then a check for convergence will be used at each step of the

Kalman filter iterations. Once convergence has been achieved, the converged state disturbance

covariance matrix, Kalman gain, and forecast error covariance matrix are used at all remaining

iterations, reducing the computational burden. The tolerance for determining convergence is con-

trolled by the tolerance attribute, which is initially set to 10−19 but can be changed by the user.

For example, to disable the use of converged values in the model above one could use the code

nile_model_3.tolerance = 0.
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Second, two recent innovations in Kalman filtering are available to handle large-

dimensional observations. These include the univariate filtering approach of Koop-

man and Durbin (2000) and the collapsed approach of Jungbacker and Koopman

(2014). The use of these approaches are controlled by the set_filter_method

method. For example, to enable both of these approaches in the Nile model, one

could use the code nile_model_3.set_filter_method(filter_univariate=True,

filter_collapsed=True) (this is just for illustration, since of course there is only a single

variable in that model so that these options would have no practical effect).

Next, options to enable conservation of computer memory (RAM) are available and are control-

lable via the set_conserve_memory method. It should be noted that the usefulness of these op-

tions depends on the analysis required by the user because smoothing requires all filtering values

and simulation smoothing requires all smoothing and filtering values. However, in maximum like-

lihood estimation or Metropolis-Hastings posterior simulation, all that is required is the joint like-

lihood value. One might enable memory conservation until optimal parameters have been found

and then disable it so as to calculate any filtered and smoothed values of interest. In Gibbs sam-

pling MCMC approaches, memory conservation is not available because the simulation smoother

is required.

Fourth, predictions and impulse response functions are immediately available for any state space

model through the filter results object (obtained as the returned value from a filter call), through

the predict and impulse_responses methods. These will be demonstrated below.

Fifth, the Kalman filter (and smoothers) are fully equipped to handle missing observation data; no

special code is required.

Finally, before moving on to specific parameter estimation methods it is important to note that

the simulation smoother object created via the simulation_smoother method generates simu-

lations based on the state space matrices as they are defined when the simulation is performed and

not when the simulate method was called. This will be important when implementing Gibbs

27



sampling MCMC parameter estimation methods. As an illustration, consider the following code:

# BEFORE: Perform some simulations with the original parameters
nile_simsmoother_1 = nile_model_1.simulation_smoother()
nile_model_1.update([15099.0, 1469.1])
nile_simsmoother_1.simulate()
# ...

# AFTER: Perform some new simulations with new parameters
nile_model_1.update([10000.0, 1.0])
nile_simsmoother_1.simulate()
# ...

Fig. 5 plots ten simulations generated during the BEFORE period, and ten simulations from the

AFTER period. It is clear that they are simulating different series, reflecting the different parame-

ters values in place at the time of simulation.

Fig. 5: Simulations of the unobserved level for Nile data under two different parameter sets.

3.4 Practical considerations

As described before, two practical considerations with the Kalman filter are numerical stability

and performance. Briefly discussed were the availability of a square-root filter and the use of

compiled computer code. In practice, the square-root filter is rarely required, and this Python

implementation does not use it. One good reason for this is that “the amount of computation

required is substantially larger” (Durbin and Koopman, 2012), and acceptable numerical stability

for most models is usually achieved via enforced symmetry of the state covariance matrix (see

Grewal and Andrews, 2014, for example).

High performance is achieved primarily through the use of Cython (Behnel et al., 2011). Cython
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allows suitably modified Python code to be compiled to C, in some cases (such as the current

one) dramatically improving performance. Note that compiled code for performance-critical com-

putation is also available in several of the other Kalman filtering implementations mentioned in

the introduction. Other performance-related features, such as the recent advances in filtering with

large-dimensional observations described in the preceding section, are also available.

An additional practical consideration whenever computer code is at issue is the possibility of pro-

gramming errors (“bugs”). McCullough and Vinod (1999) emphasize the need for tests ensuring

accurate results, as well as good documentation and the availability of source code so that checking

for bugs is possible. The source code for this implementation is available, with reasonably exten-

sive inline comments describing procedures. Furthermore, even though the spectre of bugs cannot

be fully exorcised, over a thousand “unit tests” have been written, and are available for users to run

themselves, comparing output to known results from a variety of outside sources. These tests are

run continuously with the software’s development to prevent errors from creeping in.

At this point, we once again draw attention to the separation of concerns made possible by the

implementation approach pursued here. Although writing the code for a conventional Kalman filter

is relatively trivial, writing the code for a Kalman filter, smoother, and simulation smoother using

the univariate and collapsed approaches, properly allowing for missing data, and in a compiled

language to achieve acceptable performance is not. And yet, for models in state space form, the

solution, once created, is entirely generic. The use of an object oriented approach here is what

allows users to have the best of both worlds: classes can be custom designed using only Python

and yet they contain methods (loglike, filter, etc.) which have been written and compiled for

high performance and tested for accuracy.

3.5 Example models

In this section, we provide code describing the example models in the previous sections. This code

is provided to illustrate the above principles in specific models, and it is not necessarily the best
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way to develop these models. For example, it is more efficient to develop a single class to handle

all ARMA(p,q) models at once rather than separate classes for different orders.10

ARMA(1, 1) model

The following code is a straightforward translation of (2.7). Notice that here the state di-

mension is 2 but the dimension of the state disturbance is only 1; this is represented in

the code by setting k_states=2 but k_posdef=1.11 Also demonstrated is the possibility

of specifying the Kalman filter initialization in the class construction call with the argument

initialization=’stationary’.12

class ARMA11(sm.tsa.statespace.MLEModel):

start_params = [0, 0, 1]

def __init__(self, endog):
super(ARMA11, self).__init__(

endog, k_states=2, k_posdef=1, initialization='stationary')

self['design', 0, 0] = 1.
self['transition', 1, 0] = 1.
self['selection', 0, 0] = 1.

def update(self, params, **kwargs):
self['design', 0, 1] = params[1]
self['transition', 0, 0] = params[0]
self['state_cov', 0, 0] = params[2]

# Example of instantiating a new object, updating the parameters to the
# starting parameters, and evaluating the loglikelihood
inf_model = ARMA11(inf)
print(inf_model.loglike(inf_model.start_params)) # -2682.72563702

10 See the SARIMAX class described in Out-of-the-box models for a fully featured class built-in to Statsmodels
that allows estimating a large set of models, including ARMA(p, q).

11 The dimension of the state disturbance is named k_posdef because the selected state disturbance vector is
given not by 𝜂𝑡 but by 𝑅𝑡𝜂𝑡. The dimension of the selected state disturbance vector is always equal to the dimension
of the state, but the selected state disturbance covariance matrix will be have k_states - k_posdef zero-
eigenvalues. Thus the dimension of the state disturbance gives the dimension of the subset of the selected state
disturbance for which a positive definite covariance matrix; hence the name k_posdef.

12 Of course the assumption of stationarity would be violated for certain parameter values, for example if 𝜑 = 1.
This has important implications for parameter estimation where we typically want to only allow parameters inducing
a stationary model. This is discussed in the specific sections on parameter estimation.
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Local level model

The class for the local level model was defined in the previous section.

Real business cycle model

The real business cycle model is specified by the equations (2.7). It again has a state dimension of 2

and a state disturbance dimension of 1, and again the process is assumed to be stationary. Unlike the

previous examples, here the (structural) parameters of the model do not map directly to elements

of the system matrices. As described in the definition of the RBC model, the thirteen reduced

form parameters found in the state space matrices are non-linear functions of the six structural

parameters. We want to set up the model in terms of the structural parameters and use the update

method to perform the appropriate transformations to retrieve the reduced form parameters. This

is important because the theory does not allow the reduced form parameters to vary arbitrarily; in

particular, only certain combinations of the reduced form parameters are consistent with generation

from the underlying structural parameters through the model.

Solving the structural model for the reduced form parameters in terms of the structural parameters

requires the solution of a linear rational expectations model, and a full description of this process

is beyond the scope of this paper. This particular RBC model can be solved using the method of

Blanchard and Kahn (1980); more general solution methods exist for more general models (see for

example Klein (2000) and Sims (2002)).

Regardless of the method used, for many linear (or linearized) models the solution will be in state

space form and so the state space matrices can be updated with the reduced form parameters. For

expositional purposes, the following code snippet is not complete, but shows the general formula-

tion in Python. A complete version of the class is found in Appendix C: Real business cycle model

code.
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class SimpleRBC(sm.tsa.statespace.MLEModel):

start_params = [...]

def __init__(self, endog):
super(SimpleRBC, self).__init__(

endog, k_states=2, k_posdef=1, initialization='stationary')

# Initialize RBC-specific variables, parameters, etc.
# ...

# Setup fixed elements of the statespace matrices
self['selection', 1, 0] = 1

def solve(self, structural_params):
# Solve the RBC model
# ...

def update(self, params, **kwargs):
params = super(SimpleRBC, self).update(params, **kwargs)

# Reconstruct the full parameter vector from the
# estimated and calibrated parameters
structural_params = ...
measurement_variances = ...

# Solve the model
design, transition = self.solve(structural_params)

# Update the statespace representation
self['design'] = design
self['obs_cov', 0, 0] = measurement_variances[0]
self['obs_cov', 1, 1] = measurement_variances[1]
self['obs_cov', 2, 2] = measurement_variances[2]
self['transition'] = transition
self['state_cov', 0, 0] = structural_params[...]

4 Maximum Likelihood Estimation

Classical estimation of parameters in state space models is possible because the likelihood is a

byproduct of the filtering recursions. Given a set of initial parameters, numerical maximization

techniques, often quasi-Newton methods, can be applied to find the set of parameters that maximize

(locally) the likelihood function, ℒ(𝑌𝑛 | 𝜓). In this section we describe how to apply maximum

likelihood estimation (MLE) to state space models in Python. First we show how to apply a

minimization algorithm in SciPy to maximize the likelihood, using the loglike method. Second,

we show how the underlying Statsmodels functionality inherited by our subclasses can be used to

greatly streamline estimation.
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In particular, models extending from the sm.tsa.statespace.MLEModel (“MLEModel”) class

can painlessly perform maximum likelihood estimation via a fit method. In addition, summary

tables, postestimation results, and model diagnostics are available. Appendix B: Inherited at-

tributes and methods describes all of the methods and attributes that are available to subclasses

of MLEModel and to results objects.

4.1 Direct approach

Numerical optimziation routines in Python are available through the Python package SciPy

(Jones et al., 2001). Generically, these are in the form of minimizers that accept a function

and a set of starting parameters and return the set of parameters that (locally) minimize the

function. There are a number of available algorithms, including the popular BFGS (Broy-

den–Fletcher–Goldfarb–Shannon) method. As is usual when minimization routines are available,

in order to maximize the (log) likelihood, we minimize its negative.

The code below demonstrates how to apply maximum likelihood estimation to the LocalLevel

class defined in the previous section for the Nile dataset. In this case, because we have not bothered

to define good starting parameters, we use the Nelder-Mead algorithm that can be more robust than

BFGS although it may converge more slowly.

# Load the generic minimization function from scipy
from scipy.optimize import minimize

# Create a new function to return the negative of the loglikelihood
nile_model_2 = LocalLevel(nile)
def neg_loglike(params):

return -nile_model_2.loglike(params)

# Perform numerical optimization
output = minimize(neg_loglike, nile_model_2.start_params, method='Nelder-Mead')

print(output.x) # [ 15108.31 1463.55]
print(nile_model_2.loglike(output.x)) # -632.537685587

The maximizing parameters are very close to those reported by Durbin and Koopman (2012) and

achieve a negligibly higher loglikelihood (-632.53769 versus -632.53770).

33



4.2 Integration with Statsmodels

While likelihood maximization itself can be performed relatively easily, in practice there are often

many other desired quantities aside from just the optimal parameters. For example, inference often

requires measures of parameter uncertainty (standard errors and confidence intervals). Another

issue that arises is that it is most convenient to allow the numerical optimizer to choose parameters

across the entire real line. This means that some combinations of parameters chosen by the opti-

mizer may lead to an invalid model specification. It is sometimes possible to use an optimization

procedure with constraints or bounds, but it is almost always easier to allow the optimizer to choose

in an unconstrained way and then to transform the parameters to fit the model. The implementation

of parameter transformations will be discussed at greater length below.

While there is no barrier to users calculating those quantities or implementing transformations,

the calculations are standard and there is no reason for each user to implement them separately.

Again we turn to the principle of separation of concerns made possible through the object oriented

programming approach, this time by making use of the tools available in Statsmodels. In particular,

a new method, fit, is available to automatically perform maximum likelihood estimation using

the starting parameters defined in the start_params attribute (see above) and returns a results

object.

The following code further refines the local level model by adding a new attribute param_names

that augments output with descriptive parameter names. There is also a new line in the update

method that implements parameter transformations: the params vector is replaced with the output

from the update method of the parent class (MLEModel). If the parameters are not already trans-

formed, the parent update method calls the appropriate transformation functions and returns the

transformed parameters. In this class we have not yet defined any transformation functions, so the

parent update method will simply return the parameters it was given. Later we will improve the

class to force the variance parameter to be positive.
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class FirstMLELocalLevel(sm.tsa.statespace.MLEModel):
start_params = [1.0, 1.0]
param_names = ['obs.var', 'level.var']

def __init__(self, endog):
super(FirstMLELocalLevel, self).__init__(endog, k_states=1)

self['design', 0, 0] = 1.0
self['transition', 0, 0] = 1.0
self['selection', 0, 0] = 1.0

self.initialize_approximate_diffuse()
self.loglikelihood_burn = 1

def update(self, params, **kwargs):
# Transform the parameters if they are not yet transformed
params = super(FirstMLELocalLevel, self).update(params, **kwargs)

self['obs_cov', 0, 0] = params[0]
self['state_cov', 0, 0] = params[1]

With this new definition, we can instantiate our model and perform maximum likelihood estima-

tion. As one feature of the integration with Statsmodels, the result object has a summary method

that prints a table of results:

nile_mlemodel_1 = FirstMLELocalLevel(nile)

print(nile_mlemodel_1.loglike([15099.0, 1469.1])) # -632.537695048

# Again we use Nelder-Mead; now specified as method='nm'
nile_mleresults_1 = nile_mlemodel_1.fit(method='nm', maxiter=1000)
print(nile_mleresults_1.summary())

Statespace Model Results
==============================================================================
Dep. Variable: volume No. Observations: 100
Model: FirstMLELocalLevel Log Likelihood -632.538
Date: Sat, 28 Jan 2017 AIC 1269.075
Time: 15:19:50 BIC 1274.286
Sample: 01-01-1871 HQIC 1271.184

- 01-01-1970
Covariance Type: opg
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
obs.var 1.511e+04 2586.966 5.840 0.000 1e+04 2.02e+04
level.var 1463.5472 843.717 1.735 0.083 -190.109 3117.203
===================================================================================
Ljung-Box (Q): 36.00 Jarque-Bera (JB): 0.05
Prob(Q): 0.65 Prob(JB): 0.98
Heteroskedasticity (H): 0.61 Skew: -0.03
Prob(H) (two-sided): 0.16 Kurtosis: 3.08
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
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A second feature is the availability of model diagnostics. Test statistics for tests of the standardized

residuals for normality, heteroskedasticity, and serial correlation are reported at the bottom of the

summary output. Diagnostic plots can also be produced using the plot_diagnostics method,

illustrated in Fig. 6.13 Notice that Statsmodels is aware of the date index of the Nile dataset and

uses that information in the summary table and diagnostic plots.

Fig. 6: Diagnostic plots for standardised residuals after maximum likelihood estimation on Nile
data.

A third feature is the availability of forecasting (through the get_forecasts method) and im-

pulse response functions (through the impulse_responses method). Due to the nature of the

local level model these are uninteresting here, but will be exhibited in the ARMA(1,1) and real

business cycle examples below.

Parameter transformations

As mentioned above, parameter transformations are an important component of maximum likeli-

hood estimation in a wide variety of cases. For example, in the local level model above the two

estimated parameters are variances, which cannot theoretically be negative. Although the opti-

mizer avoided the problematic regions in the above example, that will not always be the case. As
13 See sections 2.12 and 7.5 of Durbin and Koopman (2012) for a description of the standardized residuals and the

definitions of the provided diagnostic tests.
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another example, ARMA models are typically assumed to be stationary. This requires coefficients

that permit inversion of the associated lag polynomial. Parameter transformations can be used to

enforce these and other restrictions.

For example, if an unconstrained variance parameter is squared the transformed variance parameter

will always be positive. Monahan (1984) and Ansley and Kohn (1986) describe transformations

sufficient to induce stationarity in the univariate and multivariate cases, respectively, by taking

advantage of the one-to-one correspondence between lag polynomial coefficients and partial auto-

correlations.14

It is strongly preferred that the transformation function have a well-defined inverse so that starting

parameters can be specified in terms of the model space and then “untransformed” to appropriate

values in the unconstrained space.

Implementing parameter transformations when using MLEModel as the base class is as simple as

adding two new methods: transform_params and untransform_params (if no parameter

transformations as required, these methods can simply be omitted from the class definition). The

following code redefines the local level model again, this time to include parameter transformations

to ensure positive variance parameters.15

14 The transformations to induce stationarity are made available in this package as the func-
tions sm.tsa.statespace.tools.constrain_stationary_univariate and
sm.tsa.statespace.tools.constrain_stationary_multivariate. Their inverses
are also available.

15 Note that in Python, the exponentiation operator is **.
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class MLELocalLevel(sm.tsa.statespace.MLEModel):
start_params = [1.0, 1.0]
param_names = ['obs.var', 'level.var']

def __init__(self, endog):
super(MLELocalLevel, self).__init__(endog, k_states=1)

self['design', 0, 0] = 1.0
self['transition', 0, 0] = 1.0
self['selection', 0, 0] = 1.0

self.initialize_approximate_diffuse()
self.loglikelihood_burn = 1

def transform_params(self, params):
return params**2

def untransform_params(self, params):
return params**0.5

def update(self, params, **kwargs):
# Transform the parameters if they are not yet transformed
params = super(MLELocalLevel, self).update(params, **kwargs)

self['obs_cov', 0, 0] = params[0]
self['state_cov', 0, 0] = params[1]

All of the code given above then applies equally to this new model, except that this class is robust

to the optimizer selecting negative parameters.

4.3 Example models

In this section, we extend the code from Representation in Python to allow for maximum likelihood

estimation through Statsmodels integration.

ARMA(1, 1) model
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from statsmodels.tsa.statespace.tools import (constrain_stationary_univariate,
unconstrain_stationary_univariate)

class ARMA11(sm.tsa.statespace.MLEModel):
start_params = [0, 0, 1]
param_names = ['phi', 'theta', 'sigma2']

def __init__(self, endog):
super(ARMA11, self).__init__(

endog, k_states=2, k_posdef=1, initialization='stationary')

self['design', 0, 0] = 1.
self['transition', 1, 0] = 1.
self['selection', 0, 0] = 1.

def transform_params(self, params):
phi = constrain_stationary_univariate(params[0:1])
theta = constrain_stationary_univariate(params[1:2])
sigma2 = params[2]**2
return np.r_[phi, theta, sigma2]

def untransform_params(self, params):
phi = unconstrain_stationary_univariate(params[0:1])
theta = unconstrain_stationary_univariate(params[1:2])
sigma2 = params[2]**0.5
return np.r_[phi, theta, sigma2]

def update(self, params, **kwargs):
# Transform the parameters if they are not yet transformed
params = super(ARMA11, self).update(params, **kwargs)

self['design', 0, 1] = params[1]
self['transition', 0, 0] = params[0]
self['state_cov', 0, 0] = params[2]

The parameters can now be easily estimated via maximum likelihood using the fit method.

This model also allows us to demonstrate the prediction and forecasting features provided by the

Statsmodels integration. In particular, we use the get_prediction method to retrieve a predic-

tion object that gives in-sample one-step-ahead predictions and out-of-sample forecasts, as well as

confidence intervals. Fig. 7 shows a graph of the output.

inf_model = ARMA11(inf)
inf_results = inf_model.fit()

inf_forecast = inf_results.get_prediction(start='2005-01-01', end='2020-01-01')
print(inf_forecast.predicted_mean) # [2005-01-01 2.439005 ...
print(inf_forecast.conf_int()) # [2005-01-01 -2.573556 7.451566 ...

If only out-of-sample forecasts had been desired, the get_forecasts method could have been

used instead, and if only the forecasted values had been desired (and not additional results like

confidence intervals), the methods predict or forecast could have been used.
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Fig. 7: In-sample one-step-ahead predictions and out-of-sample forecasts for ARMA(1,1) model
on US CPI inflation data.

Local level model

See the previous sections for the Python implementation of the local level model.

Real business cycle model

Due to the the complexity of the model, the full code for the model is too long to display inline, but

it is provided in the Appendix C: Real business cycle model code. It implements the real business

cycle model in a class named SimpleRBC and allows selecting some of the structural parameters

to be estimated while allowing others to be calibrated (set to specific values).

Often in structural models one of the outcomes of interest is the time paths of the observed variables

following a hypothetical structural shock; these time paths are called impulse response functions,

and they can be generated for any state space model.

In the first application, we will calibrate all of the structural parameters to the values suggested

in Ruge-Murcia (2007) and simply estimate the measurement error variances (these do not af-

fect the model dynamics or the impulse responses). Once the model has been estimated, the

impulse_responses method can be used to generate the time paths.
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# Calibrate everything except measurement variances
calibrated = {

'discount_rate': 0.95,
'disutility_labor': 3.0,
'capital_share': 0.36,
'depreciation_rate': 0.025,
'technology_shock_persistence': 0.85,
'technology_shock_var': 0.04**2

}
calibrated_mod = SimpleRBC(rbc_data, calibrated=calibrated)
calibrated_res = calibrated_mod.fit()

calibrated_irfs = calibrated_res.impulse_responses(40, orthogonalized=True) * 100

The calculated impulse responses are displayed in Fig. 8. By calibrating fewer parameters we can

expand estimation to include some of the structural parameters. For example, we may consider

also estimating the two parameters describing the technology shock. Implementing this only re-

quires eliminating the last two elements from the calibrated dictionary. The impulse responses

corresponding to this second exercise are displayed in Fig. 9.16

Fig. 8: Impulse response functions corresponding to a fully calibrated RBC model.

Fig. 9: Impulse response functions corresponding to a partially estimated RBC model.

Recall that the RBC model has three observables, output, labor, and consumption, and two unob-

served states, capital and the technology process. The Kalman filter provides optimal estimates of

these unobserved series at time 𝑡 based on on all data up to time 𝑡, and the state smoother provides

16 We note again that this example is merely by way of illustration; it does not represent best-practices for careful
RBC estimation.
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optimal estimates based on the full dataset. These can be retrieved from the results object. Fig. 10

displays the smoothed state values and confidence intervals for the partially estimated case.

Fig. 10: Smoothed estimates of capital and the technology process from the partially estimated
RBC model.

5 Posterior Simulation

State space models are also amenable to parameter estimation by Bayesian methods. We con-

sider posterior simulation by Markov chain Monte Carlo (MCMC) methods, and in particu-

lar using the Metropolis-Hastings and Gibbs sampling algorithms. This section describes how

to use the above models in Bayesian estimation, but fortunately no further modifications need

be made; classes defined as in the maximum likelihood section (i.e. classes that extend from

sm.tsa.statespace.MLEModel) can be used for either maximum likelihood estimation or

Bayesian estimation. Thus the example code here is only tasked with applying the previously

defined state space models.

A full discussion of Bayesian techniques is beyond the scope of this paper, but interested readers

can consult Koop (2003) for a general introduction to Bayesian econometrics, West and Harri-

son (1999) for a comprehensive Bayesian approach to state space models, and Kim and Nelson

(1999) for a excellent practical text on parameter estimation in state space models. The following

introduction to Bayesian methods is drawn from these references.

The Bayesian approach to parameter estimation begins by considering parameters as random vari-
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ables. Bayes’ theorem is applied to derive a distribution for the parameters conditional on the

observed data. This “posterior” distribution is proportional to the likelihood function multiplied

by a “prior” distribution for the parameters. The prior summarizes all information the researcher

has on the parameter values prior to observing the data. Denoting the prior as 𝜋(𝜓), the likelihood

function as ℒ(𝑌𝑛 | 𝜓), and the posterior as 𝜋(𝜓 | 𝑌𝑛), we have

𝜋(𝜓 | 𝑌𝑛) ∝ ℒ(𝑌𝑛 | 𝜓)𝜋(𝜓)

The posterior distribution is the quantity of interest; the difficulty of working with it depends on

the prior specified by the researcher and the likelihood function entailed by the selected model. In

specific cases (for example the special case of “conjugate priors”) the analytic form of the posterior

distribution can be found and used for analysis directly. More often the posterior is not available

analytically so other methods must be used to explore its properties.

Posterior simulation is a method available when a procedure exists to sample from the posterior

distribution even though the analytic form of the distribution may not be known. Posterior sim-

ulation considers drawing samples 𝜓𝑠, 𝑠 = 1 . . . 𝑆. Under fairly weak conditions a law of large

numbers can be applied so that, given the 𝑆 samples, sample averages can be used to approximate

population quantities

1

𝑆

𝑆∑︁
𝑠=1

𝑔(𝜓𝑠) →
∫︁
𝑔(𝜓)𝜋(𝜓 | 𝑌𝑛)𝑑𝜓 = 𝐸𝜋(·|𝑌𝑛) [𝑔(𝜓)]

For example, the posterior mean is often of interest and corresponds to 𝑔(𝜓) = 𝜓. Histograms can

be used to examine the shapes of the marginal distributions of individual parameters.

It may seem that sampling from an unknown distribution is impossible, but MCMC methods allow

the eventual sampling from an unknown distribution by applying an algorithm designed to ensure

that the unknown distribution is an invariant distribution of a Markov chain. The Markov chain is

initialized with an arbitrary value, and then a transition density, denoted 𝑓(𝜓𝑠 | 𝜓𝑠−1), is applied
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to draw subsequent values conditional only on the previous value. The appropriate selection of

the transition densities can usually ensure that there exists some value 𝑠 such that every subse-

quently drawn sample 𝜓𝑠, 𝑠 > 𝑠 is marginally distributed according to the unknown distribution

of interest.17 The two methods discussed below differ in the specification of the transition density.

5.1 Markov chain Monte Carlo algorithms

Metropolis-Hastings algorithm18

The Metropolis-Hastings algorithm is a very general strategy for constructing a Markov chain with

the desired invariant distribution. The transition density is specified in the following way:

1. Given the current value of the chain, 𝜓𝑠−1, a proposal value, 𝜓*, is selected according to a

proposal 𝑞(𝜓;𝜓𝑠−1) which is a fixed density function for a given value 𝜓𝑠−1.

2. With probability 𝛼(𝜓𝑠−1, 𝜓
*) (defined below) the proposed value is accepted so that the

next value of the chain is set to 𝜓𝑠 = 𝜓*; if it is not accepted, the chain remains in place

𝜓𝑠 = 𝜓𝑠−1.

𝛼(𝜓𝑠−1, 𝜓
*) = min

{︂
𝜋(𝜓* | 𝑌𝑛)𝑞(𝜓*;𝜓𝑠−1)

𝜋(𝜓𝑠−1 | 𝑌𝑛)𝑞(𝜓𝑠−1;𝜓*)
, 1

}︂

Practically speaking, the important component of this algorithm is that only the ratio of posterior

quantities is required. Recalling from above that the posterior is proportional to the likelihood and

the prior we can rewrite the probability of acceptance as

𝛼(𝜓𝑠−1, 𝜓
*) = min

{︂
ℒ(𝑌𝑛 | 𝜓*)𝜋(𝜓*)𝑞(𝜓*;𝜓𝑠−1)

ℒ(𝑌𝑛 | 𝜓𝑠−1)𝜋(𝜓𝑠−1)𝑞(𝜓𝑠−1;𝜓*)
, 1

}︂

Given a particular specification for the prior and proposal distributions, this ratio can be computed,

17 Of course the value 𝑠 is unknown and can in some cases be quite large, although statistical tests do exist that can
explore this issue.

18 This discussion is somewhat loose; see Tierney (1994) and Chib and Greenberg (1995) for careful treatments.
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where the likelihood function is evaluated as a byproduct of the Kalman filter iterations. In the

special case that the proposal distribution satistifes 𝑞(𝜓𝑠−1;𝜓
*) = 𝑞(𝜓*;𝜓𝑠−1) (as will be the case

in the examples below), we can again rewrite the probabilty of acceptance as

𝛼(𝜓𝑠−1, 𝜓
*) = min

{︂
ℒ(𝑌𝑛 | 𝜓*)𝜋(𝜓*)

ℒ(𝑌𝑛 | 𝜓𝑠−1)𝜋(𝜓𝑠−1)
, 1

}︂

One convenient choice of proposal distribution that allows this is the so-called random walk pro-

posal with Gaussian increment, defined such that

𝜓* = 𝜓𝑠−1 + 𝜖𝑠, 𝜖𝑠 ∼ 𝑁(0,Σ𝜖)

Notice that to use this proposal distribution, we must set the variance Σ𝜖. This is often calibrated to

achieve some target acceptance rate (ratio of accepted to rejected draws); see the references above

for more details.

Gibbs sampling algorithm

Suppose that we can block the parameter vector into 𝐾 subvectors, so that 𝜓 =

{𝜓(1), 𝜓(2), . . . , 𝜓(𝐾)}, and further suppose that all conditional posterior distributions of the form

𝜋(𝜓(𝑘) | 𝜓(−𝑘), 𝑌𝑛), 𝑘 = 1, . . . , 𝐾 can be sampled from. Then the transition density moving from

𝜓𝑠−1 to 𝜓𝑠 can be defined as follows:

1. Given the current value of the chain 𝜓𝑠−1, sample 𝜓(1)
𝑠 according to the density 𝜋(𝜓(1) |

𝜓
(−1)
𝑠−1 , 𝑌𝑛).

2. Sample 𝜓(2)
𝑠 according to the density 𝜋(𝜓(1) | 𝜓(−1,2)

𝑠−1 , 𝜓
(1)
𝑠 , 𝑌𝑛)

3. [repeat for 𝑘 = 3, . . . , 𝐾]

4. Then 𝜓𝑠 = {𝜓(1)
𝑠 , 𝜓

(2)
𝑠 , . . . , 𝜓

(𝐾)
𝑠 }

In the case of state space models, we can augment the parameter vector to include the unobserved

states. Notice then that the conditional posterior distribution for the states is exactly the distribution
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from which the simulation smoother produces simulated states; i.e. �̃� is drawn according to 𝜋(𝛼 |

𝜓, 𝑌𝑛).

The conditional distributions for the parameter vector must be identified on a case-by-case basis.

However, notice that the conditional posterior distribution conditions on the unobserved states, so

that in many cases the conditional distributions follow from well known econometric problems.

For example, if the observation covariance matrix is diagonal, the rows of the observation equation

can be viewed as equation-by-equation OLS.

Metropolis-within-Gibbs sampling algorithm

In the case that the parameter vector can be blocked as above but some of the conditional posterior

distributions cannot be directly sampled from, a hybrid MCMC approach can be taken. The Gibbs

sampling algorithm is used as defined above, except that for any block 𝑘 such that the conditional

posterior cannot be sampled from, the Metropolis-Hastings algorithm is applied for that block (i.e.

a proposal is generated and accepted with the probability defined above).

5.2 Implementing Metropolis-Hastings: the local level model

In this section we describe implementing the Metropolis-Hastings algorithm to estimate unknown

parameters of a state space model. First, it is illuminating to consider a direct approach where all

code is explicit. Second, we consider using the another Python library (PyMC) to streamline the

estimation process.

The local level, as written above, has two variance parameters 𝜎2
𝜀 and 𝜎2

𝜂 . In practice we will sample

the standard deviations 𝜎𝜀 and 𝜎𝜂. Recalling the Metropolis-Hastings algorithm, in order to proceed

we will need to evaluate the likelihood and the prior and specify a proposal distribution. The

likelihood will be evaluated using the Kalman filter via the loglike method introduced earlier.

The parameters are chosen to have independent inverse-gamma priors, with the shape and scale
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Table 5: Priors for the local level model applied to Nile data.

Parameter Prior distribution Shape Scale Prior mean Prior variance

𝜎𝜀 Inverse-gamma 3 300 150 22,500
𝜎𝜂 Inverse-gamma 3 120 60 3,600

parameters set as in Table 5.19 We will use the random walk proposal, which simply requires

drawing a value from a multivariate normal distribution each iteration. We set the variance of the

random walk innovation to be the identity matrix times ten. The prior densities can be evaluated

and variates drawn from the multivariate normal using the Python package SciPy.

For each iteration, the acceptance probability can be calculated from the above elements, and the

decision to accept or reject can be made by comparing the acceptance probability to a random

variate from a standard uniform distribution.

Direct approach

Given the existence of the local level class (MLELocalLevel) for calculating the loglikelihood,

the code for performing an MCMC exercise is relatively simple. First, we initialize the priors and

the proposal distribution

from scipy.stats import multivariate_normal, invgamma, uniform

# Create the model for likelihood evaluation
model = MLELocalLevel(nile)

# Specify priors
prior_obs = invgamma(3, scale=300)
prior_level = invgamma(3, scale=120)

# Specify the random walk proposal
rw_proposal = multivariate_normal(cov=np.eye(2)*10)

Next, we perform 10,000 Metropolis-Hastings iterations as follows. The resultant histograms and

19 To be clear, since there are multiple ways to parameterize the inverse-gamma distribution, with 𝑥 ∼ IG(𝛼, 𝛽)
the density we consider is

𝑝(𝑥) =
𝛽𝛼

Γ(𝛼)
𝑥−𝛼−1𝑒−

𝛽
𝑥
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traces in terms of the variances, as well as a plot of the acceptance ratio over the iterations, are

given in Fig. 11.20

# Create storage arrays for the traces
n_iterations = 10000
trace = np.zeros((n_iterations + 1, 2))
trace_accepts = np.zeros(n_iterations)
trace[0] = [120, 30] # Initial values

# Iterations
for s in range(1, n_iterations + 1):

proposed = trace[s-1] + rw_proposal.rvs()

acceptance_probability = np.exp(
model.loglike(proposed**2) - model.loglike(trace[s-1]**2) +
prior_obs.logpdf(proposed[0]) + prior_level.logpdf(proposed[1]) -
prior_obs.logpdf(trace[s-1, 0]) - prior_level.logpdf(trace[s-1, 1]))

if acceptance_probability > uniform.rvs():
trace[s] = proposed
trace_accepts[s-1] = 1

else:
trace[s] = trace[s-1]

Fig. 11: Output from Metropolis-Hastings posterior simulation on Nile data.

Integration with PyMC

Parameters can also be simply estimated by taking advantage of the PyMC library (Patil et al.,

2010). A full discussion of the features and use of this library is beyond the scope of this paper and

20 The output figures are ultimately based on 900 simulated values for each parameter. Of the 10,000 simulations
performed, the first 1,000 were eliminated as the burn-in period and the remaining 9,000 were thinned by only taking
each 10th sample, to reduce the effects of autocorrelated draws.
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instead we only introduce the features we need for estimation of this model. A similar approach

would handle most state space models, and the PyMC documentation can be consulted for more

advanced usage, including sophisticated sampling techniques such as slice sampling and No-U-

Turn sampling.

As above, we need to create objects representing the selected priors and an object representing the

likelihood function. The former are referred to by PyMC as “stochastic” elements, and the latter

as a “data” element (which is a stochastic element that has already been “observed” and so is not

sampled from). The priors and likelihood function using the MLELocalLevel class defined above

can be implemented with PyMC in the following way

import pymc as mc

# Priors as "stochastic" elements
prior_obs = mc.InverseGamma('obs', 3, 300)
prior_level = mc.InverseGamma('level', 3, 120)

# Create the model for likelihood evaluation
model = MLELocalLevel(nile)

# Create the "data" component (stochastic and observed)
@mc.stochastic(dtype=sm.tsa.statespace.MLEModel, observed=True)
def loglikelihood(value=model, obs_std=prior_obs, level_std=prior_level):

return value.loglike([obs_std**2, level_std**2])

We do not need to explicitly specify the proposal; PyMC uses an adaptive proposal by default.

Instead, we simply need to create a “model”, which unifies the priors and likelihood, and a “sam-

pler”. The sampler is an object used to perform the simulations and return the trace objects. The

resultant histograms and traces in terms of the variances from 10,000 iterations are given in Fig.

12.21

# Create the PyMC model
pymc_model = mc.Model((prior_obs, prior_level, loglikelihood))

# Create a PyMC sample and perform sampling
sampler = mc.MCMC(pymc_model)
sampler.sample(iter=10000, burn=1000, thin=10)

21 The acceptance ratio is not provided by PyMC when the adaptive proposal is used.
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Fig. 12: Output from Metropolis-Hastings posterior simulation on Nile data, using the PyMC
library.

5.3 Implementing Gibbs sampling: the ARMA(1,1) model

In this section we describe implementing the Gibbs sampling algorithm to estimation unknown

parameters of a state space model. Only the direct approach is presented here (as of now, PyMC

only has preliminary support for Gibbs sampling). The Metropolis-within-Gibbs approach is used

to demonstrate both how to apply Gibbs sampling and how to apply a hybrid approach.

Recalling the Gibbs sampling algorithm, in order to proceed we need to block the parameters and

the unobserved states such the the conditional distributions can be found. We will choose four

blocks, so that the unobserved states are in the first block, the autoregressive coefficient is in the

second block, the variance is in the third block, and the moving average coefficient is in the last

block. In notation, this means that 𝜓 = {𝜓(1), 𝜓(2), 𝜓(3), 𝜓(4)} = {𝛼, 𝜑, 𝜎2, 𝜃}. We will apply

Gibbs steps for the first, second, and third blocks and a Metropolis step for the fourth block.

We select priors for the parameters so that the conditional posterior distributions that we require

can be constructed. For the autogressive coefficients we select a multivariate normal distribution

- conditional on the variance - with an identity covariance matrix and restricted to the space such

that the corresponding lag polynomial is invertible. To be precise, the prior is 𝜑 | 𝜎2 ∼ 𝑁(0, 𝐼)
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such that 𝜑(𝐿) is invertible.

For the variance, we select an inverse-gamma distribution - conditional on the autoregressive co-

efficients - with the shape and scale parameters both set to three. To be precise, the prior is

𝜎2 | 𝜑 ∼ 𝐼𝐺(3, 3). These choices will be convenient due to their status as conjugate priors

for the linear regression model; they will lead to known conditional posterior distributions.

Finally, the prior for the moving-average coefficient is specified to be uniform over the interval

(−1, 1), so that 𝜃 ∼ unif(−1, 1). Notice that the prior density for all values in the range is equal,

and so the acceptance probability is either zero, in the case that the proposed value is outside the

range, or else simplifies to the ratio of the likelihoods because the prior values cancel out. We will

use a random walk proposal with standard Gaussian increment.

Now, conditional on the model parameters, a draw of 𝜓(1) can be taken by applying the simulation

smoother as shown in previous sections. Next notice that, given the values of the states, the first

row of the transition equation in (2.7) is simply a linear regression:

𝛼1,𝑡+1 = 𝜑𝛼1,𝑡 + 𝜀𝑡+1

Stacking these equations across all 𝑡 into matrix form yields 𝑍 = 𝑋𝜑 + 𝜀. A standard result

applying conjugate priors to the linear regression model (see for example Kim and Nelson, 1999)

is that the conditional posterior distribution for the coefficients is Gaussian and the conditional

posterior distribution for the variance is inverse-gamma. To be precise, given our choice of prior

hyperparameters here we have

𝜑 | 𝜎2, 𝛼, 𝑌𝑛 ∼ 𝑁
(︁

(𝜎2𝐼 +𝑋 ′𝑋)−1𝑋 ′𝑍, (𝐼 + 𝜎−2𝑋 ′𝑋)−1
)︁

𝜎2 | 𝜑, 𝛼, 𝑌𝑛 ∼ 𝐼𝐺
(︁

3 + 𝑛, 3 + (𝑍 −𝑋𝜑)′(𝑍 −𝑋𝜑)
)︁

Making draws from these conditional posteriors can be implemented in the following way
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from scipy.stats import multivariate_normal, invgamma

def draw_posterior_phi(model, states, sigma2):
Z = states[0:1, 1:]
X = states[0:1, :-1]

tmp = np.linalg.inv(sigma2 * np.eye(1) + np.dot(X, X.T))
post_mean = np.dot(tmp, np.dot(X, Z.T))
post_var = tmp * sigma2

return multivariate_normal(post_mean, post_var).rvs()

def draw_posterior_sigma2(model, states, phi):
resid = states[0, 1:] - phi * states[0, :-1]
post_shape = 3 + model.nobs
post_scale = 3 + np.sum(resid**2)

return invgamma(post_shape, scale=post_scale).rvs()

Implementing the hybrid method then consists of the following steps for each iteration, given the

previous value 𝜓𝑠−1.

1. Apply the simulation smoother to retrieve a draw of the unobserved states, yielding �̃� = 𝜓
(1)
𝑠 .

2. Draw a value for 𝜑 = 𝜓
(2)
1 from its conditional posterior distribution, conditioning on the

states drawn in step 1 and the parameters from the previous iteration.

3. Draw a value for 𝜎2 = 𝜓
(3)
𝑠 from its conditional posterior distribution, conditioning on the

state states drawn in step 1 and the autoregression coefficients drawn in step 2.

4. Propose a new value for 𝜃 = 𝜓
(4)
𝑠 using the random walk proposal, and calculate the accep-

tance probability using the loglike function.

The implementation code is below, and the resultant histograms and traces from 10,000 iterations

are given in Fig. 13.
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from scipy.stats import norm, uniform
from statsmodels.tsa.statespace.tools import is_invertible

# Create the model for likelihood evaluation and the simulation smoother
model = ARMA11(inf)
sim_smoother = model.simulation_smoother()

# Create the random walk and comparison random variables
rw_proposal = norm(scale=0.3)

# Create storage arrays for the traces
n_iterations = 10000
trace = np.zeros((n_iterations + 1, 3))
trace_accepts = np.zeros(n_iterations)
trace[0] = [0, 0, 1.] # Initial values

# Iterations
for s in range(1, n_iterations + 1):

# 1. Gibbs step: draw the states using the simulation smoother
model.update(trace[s-1], transformed=True)
sim_smoother.simulate()
states = sim_smoother.simulated_state[:, :-1]

# 2. Gibbs step: draw the autoregressive parameters, and apply
# rejection sampling to ensure an invertible lag polynomial
phi = draw_posterior_phi(model, states, trace[s-1, 2])
while not is_invertible([1, -phi]):

phi = draw_posterior_phi(model, states, trace[s-1, 2])
trace[s, 0] = phi

# 3. Gibbs step: draw the variance parameter
sigma2 = draw_posterior_sigma2(model, states, phi)
trace[s, 2] = sigma2

# 4. Metropolis-step for the moving-average parameter
theta = trace[s-1, 1]
proposal = theta + rw_proposal.rvs()
if proposal > -1 and proposal < 1:

acceptance_probability = np.exp(
model.loglike([phi, proposal, sigma2]) -
model.loglike([phi, theta, sigma2]))

if acceptance_probability > uniform.rvs():
theta = proposal
trace_accepts[s-1] = 1

trace[s, 1] = theta

5.4 Implementing Gibbs sampling: real business cycle model

Finally, we can apply the same techniques as above to perform Metropolis-within-Gibbs estimation

of the real business cycle model parameters. It is often difficult to estimate all of the parameters

of the RBC model, or other structural models, by maximum likelihood. Indeed, above we only

estimated two of the six structural parameters. By choosing appropriately tight priors it is often

feasible to estimate more parameters; in this example we estimate four of the six structural pa-
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Fig. 13: Output from Metropolis-within-Gibbs posterior simulation on US CPI inflation data.

rameters: the discount rate, capital share, and the two technology shock parameters. Of the two

remaining parameters, the disutility of labor only serves to pin down steady-state values and so

the model presented above is independent of its value (since it considers data in in deviation-from-

steady-state values), and the depreciation rate is best calibrated when the observation datasets do

not speak to to depreciation (see, for example, the discussion in Smets and Wouters (2007)).

For the Metropolis-within-Gibbs simulation, we consider 8 blocks. The first three blocks are sam-

pled using Gibbs steps, and are very similar to the ARMA(1,1) example; the first block samples the

unobserved states, and the second and third blocks sample the two technology shock parameters.

Noticing that the second row of the transition equation is simply an autoregression, conditional

on the states, we can use the same approach as before. Thus the priors on these parameters are

the Gaussian and inverse-gamma conjugate priors and the unobserved states are sampled using the

simulation smoother.

The remaining blocks apply Metropolis steps to sample the remaining five parameters: the discount

rate, capital share, and the three measurement variances. The priors on these parameters are as in

Smets and Wouters (2007). All priors are listed in Table 6, along with statistics describing the

posterior draws.

6 If the discount rate is denoted 𝛽, then the Gamma prior actually applies to the transformation 100(𝛽−1 − 1).
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Table 6: Priors and posteriors for the real business cycle model.

Prior distribution Posterior distribution
Distribution Mean Std.

Dev.
Mode Mean 5

percent
95
percent

Discount rate 6 Gamma 0.25 0.1 0.997 0.997 0.994 0.998
Capital share Normal 0.3 0.01 0.325 0.325 0.308 0.341
Technology shock persistence Normal 0 1 0.672 0.637 -0.271 0.940
Technology shock variance Inverse-

gamma
0.01 1.414 8.65e-

5
8.98e-
5

7.67e-5 1.05e-4

Output error standard deviation Inverse-
gamma

0.1 2 2.02e-
5

2.29e-
5

1.46e-5 3.34e-05

Labor error standard deviation Inverse-
gamma

0.1 2 3.06e-
5

3.21e-
5

2.25e-5 4.34e-05

Consumption error standard
deviation

Inverse-
gamma

0.1 2 2.46e-
5

2.57e-
5

1.94e-5 3.28e-05

Again, the code is slightly too long to display inline, so it can be found in Appendix C: Real

business cycle model code. We perform 100,000 draws and burn the first 10,000. Of the remaining

90,000 draws, each tenth draw is saved, so that the results below are ultimately based on 9,000

draws. Histograms of the four estimated structural parameters are presented in Fig. 14.

Fig. 14: Output from Metropolis-within-Gibbs posterior simulation of the real business cycle.

As before, we may be interested in the implied impulse response functions and the smoothed state

values; here we calculate these by applying the Kalman filter and smoother to the model based

on the median parameter values. Fig. 15 displays the impulse responses and Fig. 16 displays the

smoothed states and confidence intervals.
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Fig. 15: Impulse response functions corresponding to Metropolis-within-Gibbs estimation of the
real business cycle.

Fig. 16: Smoothed estimates of capital and the technology process from Metropolis-within-Gibbs
estimation of the real business cycle.

6 Out-of-the-box models

This paper has focused on demonstrating the creation of classes to specify and estimate arbitrary

state space models. However, it is worth noting that classes implementing state space models for

four of the most popular models in time series analysis are built in. These classes have been created

exactly as described above (e.g. they are all subclasses of sm.tsa.statespace.MLEModel), and

can be used directly or even extended with their own subclasses. The source code is available, so

that they also serve as advanced examples of what can be accomplished in this framework.

Maximum likelihood estimation is available immediately simply by calling the fit method. Fea-

tures include the calculation of reasonable starting values, the use of appropriate parameter trans-

formations, and enhanced results classes. Bayesian estimation via posterior simulation can be

performed as described in this paper by taking advantage of the loglike method and the sim-

ulation smoother. Of course the selection of priors, parameter blocking, etc. must be manually

implemented, as above.
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In this section, we briefly describe each time series model and provide examples.

6.1 SARIMAX

The seasonal autoregressive integrated moving-average with exogenous regressors (SARIMAX)

model is a generalization of the familiar ARIMA model to allow for seasonal effects and explana-

tory variables. It is typically denoted SARIMAX (𝑝, 𝑑, 𝑞) × (𝑃,𝐷,𝑄, 𝑠) and can be written as

𝑦𝑡 = 𝛽𝑡𝑥𝑡 + 𝑢𝑡

𝜑𝑝(𝐿)𝜑𝑃 (𝐿𝑠)∆𝑑∆𝐷
𝑠 𝑢𝑡 = 𝐴(𝑡) + 𝜃𝑞(𝐿)𝜃𝑄(𝐿𝑠)𝜁𝑡

where 𝑦𝑡 is the observed time series and 𝑥𝑡 are explanatory regressors. 𝜑𝑝(𝐿), 𝜑𝑃 (𝐿𝑠), 𝜃𝑞(𝐿), and

𝜃𝑄(𝐿𝑠) are lag polynomials and ∆𝑑 is the differencing operator ∆, applied 𝑑 times. This model is

sometimes described as regression with SARIMA errors.

It is straightforward to apply this model to data by creating an instance of the class

sm.tsa.SARIMAX. For example, if we wanted to estimate an ARMA(1,1) model for US CPI

inflation data using this class, the following code could be used

model_1 = sm.tsa.SARIMAX(inf, order=(1, 0, 1))
results_1 = model_1.fit()
print(model_1.loglike(results_1.params)) # -432.375194381

We can also extend this example to take into account annual seasonality. Below we estimate an

SARIMA(1,0,1)x(1,0,1,12) model. This model achieves a lower value for the Akaike information

criterion (AIC), which indicates a potentially better fit.22

22 The Akaike information criterion, as well as several other information criteria, is available for all models that
extend the sm.tsa.statespace.MLEModel class. See the tables in Appendix B: Inherited attributes and
methods for all available attributes and methods.
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model_2 = sm.tsa.SARIMAX(inf, order=(1, 0, 1), seasonal_order=(1, 0, 1, 12))
results_2 = model_2.fit()

# Compare the two models on the basis of the Akaike information criterion
print(results_1.aic) # 870.750388763
print(results_2.aic) # 844.623363003

6.2 Unobserved components

Unobserved components models, also known as structural time series models, decompose a uni-

variate time series into trend, seasonal, cyclical, and irregular components. They can be written

as:

𝑦𝑡 = 𝜇𝑡 + 𝛾𝑡 + 𝑐𝑡 + 𝜀𝑡

where 𝑦𝑡 refers to the observation vector at time 𝑡, 𝜇𝑡 refers to the trend component, 𝛾𝑡 refers to

the seasonal component, 𝑐𝑡 refers to the cycle, and 𝜀𝑡 is the irregular. The modeling details of

these components can be found in the package documentation. These models are also described

in depth in Chapter 3 of Durbin and Koopman (2012). The class corresponding to these models is

sm.tsa.UnobservedComponents.

As an example, consider extending the model previously applied to the Nile river data to include

a stochastic cycle, as suggested in Mendelssohn (2011). This is straightforward with the built-in

model; the below example fits the model and plots the unobserved components, in this case a level

and a cycle, in Fig. 17.

model = sm.tsa.UnobservedComponents(nile, 'llevel', cycle=True, stochastic_cycle=True)
results = model.fit()
fig = results.plot_components(observed=False)
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Fig. 17: Estimates of the unobserved level and cyclical components of Nile river volume.

6.3 VAR

Vector autoregressions are important tools for reduced form time series analysis of multiple vari-

ables. Their form looks similar to an AR(p) model except that the variables are vectors and the

coefficients are matrices.

𝑦𝑡 = Φ1𝑦𝑡−1 + · · · + Φ𝑝𝑦𝑡−𝑝 + 𝜀𝑡

These models can be estimated using the sm.tsa.VARMAX class, which also allows estimation of

vector moving average models and optionally models with exogenous regressors.23 The following

code estimates a vector autoregression as a state space model (the starting parameters are the

OLS estimates) and generates orthogonalized impulse response functions for shocks to each of the

endogenous variables; these responses are plotted in Fig. 18.24

model = sm.tsa.VARMAX(rbc_data, order=(1, 0))
results = model.fit()

# Generate impulse response functions; the `impluse` argument is used to
# specify which shock is pulsed.
output_irfs = results.impulse_responses(15, impulse=0, orthogonalized=True) * 100
labor_irfs = results.impulse_responses(15, impulse=1, orthogonalized=True) * 100
consumption_irfs = results.impulse_responses(15, impulse=2, orthogonalized=True) * 100

23 Estimation of VARMA(p,q) models is practically possible, although it is not recommended because no measures
are in place to ensure identification (for example, the use of Kronecker indices is not yet available).

24 Note that the orthogonalization is by Cholesky decomposition, which implicitly enforces a a causal ordering to
the variables. The order is as defined in the provided dataset. Here rbc_data orders the variables as output, labor,
consumption.
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Fig. 18: Impulse response functions derived from a vector autoregression.

6.4 Dynamic factors

Dynamic factor models are another set of important reduced form multivariate models. They can

be used to extract a common component from multifarious data. The general form of the model

available here is the so-called static form of the dynamic factor model and can be written

𝑦𝑡 = Λ𝑓𝑡 +𝐵𝑥𝑡 + 𝑢𝑡

𝑓𝑡 = 𝐴1𝑓𝑡−1 + · · · + 𝐴𝑝𝑓𝑡−𝑝 + 𝜂𝑡

𝑢𝑡 = 𝐶1𝑢𝑡−1 + · · · + 𝐶1𝑓𝑡−𝑞 + 𝜀𝑡

where 𝑦𝑡 is the endogenous data, 𝑓𝑡 are the unobserved factors which follow a vector autoregres-

sion, and 𝑥𝑡 are optional exogenous regressors. 𝜂𝑡 and 𝜀𝑡 are white noise error terms, and 𝑢𝑡 allows

the possibility of autoregressive (or vector autoregressive) errors. In order to identify the factors,

𝑉 𝑎𝑟(𝜂𝑡) ≡ 𝐼 .

The following code extracts a single factor that follows an AR(2) process. The error term is not

assumed to be autoregressive, so in this case 𝑢𝑡 = 𝜀𝑡. By default the model assumes the elements

of 𝜀𝑡 are not cross-sectionally correlated (this assumption can be relaxed if desired). Fig. 19 plots

the responses of the endogenous variables to an impulse in the unobserved factor.
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model = sm.tsa.DynamicFactor(rbc_data, k_factors=1, factor_order=2)
results = model.fit()
print(results.coefficients_of_determination) # [ 0.957 0.545 0.603 ]

# Because the estimated factor turned out to be inversely related to the
# three variables, we want to consider the negative of the impulse
dfm_irfs = -results.impulse_responses(15, impulse=0, orthogonalized=True) * 100

Fig. 19: Impulse response functions derived from a dynamic factor model.

It is often difficult to directly interpret either the filtered estimates of the unobserved factors or the

estimated coefficients of the Λ matrix (called the matrix of factor loadings) due to identification

issues related to the factors. For example, notice that Λ𝑓𝑡 = (−Λ)(−𝑓𝑡) so that reversing the signs

of the factors and loadings results in an identical model. It is often informative instead to examine

the extent to which each unobserved factor explains each endogenous variable (see for example

Jungbacker and Koopman (2014)). This can be explored using the 𝑅2 value from the regression of

each endogenous variable on each estimated factor and a constant. These values are available in

the results attribute coefficients_of_determination. For the model estimated above, it is

clear that the estimated factor largely tracks output.

7 Conclusion

This paper describes the use of the Statsmodels Python library for the specification and estimation

of state space models. It begins by presenting the notation and equations describing state space

models and the filtering, smoothing, and simulation smoothing operations required for estimation.

Next, it maps these concepts to programming code using the the technique of object oriented

programming and describes a simple method for the specification of state space models. Brief

theoretical introductions to maximum likelihood estimation and Bayesian posterior simulation are
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given and mapped to programming code; the object oriented representation of state space models

makes parameter estimation simple and straightforward.

Three examples, an ARMA(1,1) model, the local level model, and a simple real business cycle

model are developed throughout, first theoretically and then as models specified in programming

code. Classical and Bayesian estimation of the parameters of each model is performed. Finally,

four flexible generic time series models provided in Statsmodels are described. Using these built-

in classes, two of the example models, the ARMA(1,1) model and the local level model, are re-

estimated and then extended to more complex, better fitting models.
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Appendix A: Installation

To use all of the features described in this paper, at least version 0.9.0 of Statsmodels must be used.

Many of the features are also available in version 0.8.0. Some of the features not available in 0.8.0

include simulation smoothing and the univariate filtering and smoothing method.

The most straightforward way to install the correct version of Statsmodels is using pip. The fol-

lowing steps should be followed.

1. Install git. Instructions are available many places, for example at https://git-scm.com/book/

en/v2/Getting-Started-Installing-Git

2. Install the development version of Statsmodels using the following command:

pip install git+git://github.com/statsmodels/statsmodels.git

At this point, the package should installed. If you have the Nose package installed, you can test

for a successful installation by running the following command (this may take a few minutes):

python -c "import statsmodels.tsa.statespace as ssm; ssm.test();"

There should be no failures (although a number of Warnings are to be expected).

Dependencies

The Statsmodels library requires the “standard Python stack” of scientific libraries:

• NumPy

• SciPy >= 0.17.1

• Pandas >= 0.18.1

• Cython >= 0.22.0
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• Git (this is required to install the development version of Statsmodels)

There are also a few optional dependencies:

• Matplotlib; this is required for plotting functionality

• Nose; this is required for running the test suite

• IPython / Jupyter; this is required for running the examples or building the documentation
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Table 7: Methods available to subclasses of sm.tsa.statespace.MLEModel

Method Description

filter Kalman filtering
fit Fits the model by maximum likelihood via Kalman filter.
loglike Joint loglikelihood evaluation
loglikeobs Loglikelihood evaluation
set_filter_method Set the filtering method
set_inversion_method Set the inversion method
set_stability_method Set the numerical stability method
set_conserve_memory Set the memory conservation method
set_smoother_output Set the smoother output
simulation_smoother Retrieve a simulation smoother for the statespace model.
initialize_known Initialize the Kalman filter with known values
initialize_approximate_diffuse Specify approximate diffuse Kalman filter initialization
initialize_stationary Initialize the statespace model as stationary
simulate Simulate a new time series following the state space model
impulse_responses Impulse response function

Table 8: Attributes available to subclasses of sm.tsa.statespace.MLEModel

Attribute Description

endog The observed (endogenous) dataset
exog The dataset of explanatory variables (if applicable)
start_params Parameter vector used to initialize parameter estimation iterations
param_names Human-readable names of parameters
initialization The selected method for Kalman filter initialization
initial_variance The initial variance to use in approximate diffuse initialization
loglikelihood_burn The number of observations during which the likelihood is not evaluated
tolerance The tolerance at which the Kalman filter determines convergence to steady-state

Appendix B: Inherited attributes and methods

sm.tsa.statespace.MLEModel

The methods available to all classes inheriting from the base classes

sm.tsa.statespace.MLEModel are listed in Table 7 and the attributes are listed in Ta-

ble 8.

The fit, filter, and smooth methods return a sm.tsa.statespace.MLEResults object; its

methods and attributes are given below.

The simulation_smoother method returns a SimulationSmoothResults object; its meth-
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Table 9: Slice keys available to subclasses of
sm.tsa.statespace.MLEModel

Attribute Description

’obs_intercept’ Observation intercept; 𝑑𝑡
’design’ Design matrix; 𝑍𝑡

’obs_cov’ Observation disturbance covariance matrix; 𝐻𝑡

’state_intercept’ State intercept; 𝑐𝑡
’transition’ Transition matrix; 𝑇𝑡

’selection’ Selection matrix; 𝑅𝑡

’state_cov’ State disturbance covariance matrix; 𝑄𝑡

Table 10: Methods available to results objects from fit, filter, and smooth

Method Description

test_normality Jarque-Bera for normality of standardized residuals.
test_heteroskedasticity Test for heteroskedasticity (break in the variance) of standardized residuals
test_serial_correlation Ljung-box test for no serial correlation of standardized residuals
get_prediction In-sample prediction and out-of-sample forecasting; returns all prediction

results
get_forecast Out-of-sample forecasts; returns all forecasting results
predict In-sample prediction and out-of-sample forecasting; only returns predicted

values
forecast Out-of-sample forecasts; only returns forecasted values
simulate Simulate a new time series following the state space model
impulse_responses Impulse response function
plot_diagnostics Diagnostic plots for standardized residuals of one endogenous variable
summary Summarize the results

ods and attributes are also given below.

sm.tsa.statespace.MLEResults

The methods available to these results objects are listed in Table 10 and the attributes are listed in

Table 11.

SimulationSmoothResults

The only method of a SimulationSmoothResults object is given in Table 12. After this method

is called, the attributes in Table 13 are populated. Each time the method is called, these attributes

change to the newly simulated values.
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Table 11: Attributes available to results objects from fit, filter, and smooth

Attribute Description

aic Akaike Information Criterion
bic Bayes Information Criterion
bse Standard errors of fitted parameters
conf_int Returns the confidence interval of the fitted parameters
cov_params_default Covariance matrix of fitted parameters
filtered_state Filtered state mean; 𝑎𝑡|𝑡
filtered_state_cov Filtered state covariance matrix; 𝑃𝑡|𝑡
fittedvalues Fitted values of the model; alias for forecasts.
forecasts Forecasts; 𝑦𝑡 = 𝑍𝑡𝑎𝑡
forecasts_error Forecast errors; 𝑣𝑡
forecasts_error_cov Forecast error covariance matrix; 𝐹𝑡

hqic Hannan-Quinn Information Criterion
kalman_gain Kalman gain; 𝐾𝑡

llf_obs The values of the loglikelihood function at the fitted
parameters; log𝐿(𝑦𝑡)

llf The value of the joint loglikelihood function at the fitted
parameters; log𝐿(𝑌𝑛)

loglikelihood_burn The number of observations during which the likelihood is not
evaluated

nobs The number of observations in the dataset
params The fitted parameters
predicted_state Predicted state mean; 𝑎𝑡
predicted_state_cov Predicted state covariance matrix; 𝑃𝑡

pvalues The p-values associated with the z-statistics of the coefficients
resid Residuals of the model; alias for forecasts_errors
smoothed_measurement_disturbanceSmoothed observation disturbance mean; 𝜀𝑡
smoothed_measurement_disturbance_covSmoothed observation disturbance covariance matrix;

𝑉 𝑎𝑟(𝜀𝑡 | 𝑌𝑛)
smoothed_state Smoothed state mean; �̂�𝑡

smoothed_state_cov Smoothed state covariance matrix; 𝑉𝑡

smoothed_state_disturbance Smoothed state disturbance mean; 𝜂𝑡
smoothed_state_disturbance_cov Smoothed state disturbance covariance matrix; 𝑉 𝑎𝑟(𝜂𝑡 | 𝑌𝑛)
zvalues The z-values of the standard errors of fitted parameters

Table 12: Methods available to results
objects from simulation_smoother

Method Description

simulate Perform simulation smoothing

Table 13: Attributes available to results objects from simulation_smoother

Attribute Description

simulated_state Simulated state vector; �̃�𝑡

simulated_measurement_disturbance Simulated measurment disturbance; 𝜀𝑡
simulated_state_disturbance Simulated state disturbance; 𝜂𝑡
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Appendix C: Real business cycle model code

This appendix presents Python code implementing the full real business cycle model, including

solution of the linear rational expectations model, as described in Representation in Python. It also

presents code for the parameter estimation by classical (see Maximum Likelihood Estimation) and

Bayesian (see Posterior Simulation) methods.

The following code implements the real business cycle model in Python as a state space model.

from collections import OrderedDict
class SimpleRBC(sm.tsa.statespace.MLEModel):

parameters = OrderedDict([
('discount_rate', 0.95),
('disutility_labor', 3.),
('depreciation_rate', 0.025),
('capital_share', 0.36),
('technology_shock_persistence', 0.85),
('technology_shock_var', 0.04**2)

])

def __init__(self, endog, calibrated=None):
super(SimpleRBC, self).__init__(

endog, k_states=2, k_posdef=1, initialization='stationary')
self.k_predetermined = 1

# Save the calibrated vs. estimated parameters
parameters = self.parameters.keys()
calibrated = calibrated or {}
self.calibrated = OrderedDict([

(param, calibrated[param]) for param in parameters
if param in calibrated

])
self.idx_calibrated = np.array([

param in self.calibrated for param in parameters])
self.idx_estimated = ~self.idx_calibrated

self.k_params = len(self.parameters)
self.k_calibrated = len(self.calibrated)
self.k_estimated = self.k_params - self.k_calibrated

self.idx_cap_share = parameters.index('capital_share')
self.idx_tech_pers = parameters.index('technology_shock_persistence')
self.idx_tech_var = parameters.index('technology_shock_var')

# Setup fixed elements of system matrices
self['selection', 1, 0] = 1

@property
def start_params(self):

structural_params = np.array(self.parameters.values())[self.idx_estimated]
measurement_variances = [0.1] * 3
return np.r_[structural_params, measurement_variances]

@property
def param_names(self):
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structural_params = np.array(self.parameters.keys())[self.idx_estimated]
measurement_variances = ['%s.var' % name for name in self.endog_names]
return structural_params.tolist() + measurement_variances

def log_linearize(self, params):
# Extract the parameters
(discount_rate, disutility_labor, depreciation_rate, capital_share,
technology_shock_persistence, technology_shock_var) = params

# Temporary values
tmp = (1. / discount_rate - (1. - depreciation_rate))
theta = (capital_share / tmp)**(1. / (1. - capital_share))
gamma = 1. - depreciation_rate * theta**(1. - capital_share)
zeta = capital_share * discount_rate * theta**(capital_share - 1)

# Coefficient matrices from linearization
A = np.eye(2)

B11 = 1 + depreciation_rate * (gamma / (1 - gamma))
B12 = (-depreciation_rate *

(1 - capital_share + gamma * capital_share) /
(capital_share * (1 - gamma)))

B21 = 0
B22 = capital_share / (zeta + capital_share*(1 - zeta))
B = np.array([[B11, B12], [B21, B22]])

C1 = depreciation_rate / (capital_share * (1 - gamma))
C2 = (zeta * technology_shock_persistence /

(zeta + capital_share*(1 - zeta)))
C = np.array([[C1], [C2]])

return A, B, C

def solve(self, params):
capital_share = params[self.idx_cap_share]
technology_shock_persistence = params[self.idx_tech_pers]

# Get the coefficient matrices from linearization
A, B, C = self.log_linearize(params)

# Jordan decomposition of B
eigvals, right_eigvecs = np.linalg.eig(np.transpose(B))
left_eigvecs = np.transpose(right_eigvecs)

# Re-order, ascending
idx = np.argsort(eigvals)
eigvals = np.diag(eigvals[idx])
left_eigvecs = left_eigvecs[idx, :]

# Blanchard-Khan conditions
k_nonpredetermined = self.k_states - self.k_predetermined
k_stable = len(np.where(eigvals.diagonal() < 1)[0])
k_unstable = self.k_states - k_stable
if not k_stable == self.k_predetermined:

raise RuntimeError('Blanchard-Kahn condition not met.'
' Unique solution does not exist.')

# Create partition indices
k = self.k_predetermined
p1 = np.s_[:k]
p2 = np.s_[k:]

p11 = np.s_[:k, :k]
p12 = np.s_[:k, k:]
p21 = np.s_[k:, :k]
p22 = np.s_[k:, k:]
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# Decouple the system
decoupled_C = np.dot(left_eigvecs, C)

# Solve the explosive component (controls) in terms of the
# non-explosive component (states) and shocks
tmp = np.linalg.inv(left_eigvecs[p22])

# This is \phi_{ck}, above
policy_state = - np.dot(tmp, left_eigvecs[p21]).squeeze()
# This is \phi_{cz}, above
policy_shock = -(

np.dot(tmp, 1. / eigvals[p22]).dot(
np.linalg.inv(

np.eye(k_nonpredetermined) -
technology_shock_persistence / eigvals[p22]

)
).dot(decoupled_C[p2])

).squeeze()

# Solve for the non-explosive transition
# This is T_{kk}, above
transition_state = np.squeeze(B[p11] + np.dot(B[p12], policy_state))
# This is T_{kz}, above
transition_shock = np.squeeze(np.dot(B[p12], policy_shock) + C[p1])

# Create the full design matrix
tmp = (1 - capital_share) / capital_share
tmp1 = 1. / capital_share
design = np.array([[1 - tmp * policy_state, tmp1 - tmp * policy_shock],

[1 - tmp1 * policy_state, tmp1 * (1-policy_shock)],
[policy_state, policy_shock]])

# Create the transition matrix
transition = (

np.array([[transition_state, transition_shock],
[0, technology_shock_persistence]]))

return design, transition

def transform_discount_rate(self, param, untransform=False):
# Discount rate must be between 0 and 1
epsilon = 1e-4 # bound it slightly away from exactly 0 or 1
if not untransform:

return np.abs(1 / (1 + np.exp(param)) - epsilon)
else:

return np.log((1 - param + epsilon) / (param + epsilon))

def transform_disutility_labor(self, param, untransform=False):
# Disutility of labor must be positive
return param**2 if not untransform else param**0.5

def transform_depreciation_rate(self, param, untransform=False):
# Depreciation rate must be positive
return param**2 if not untransform else param**0.5

def transform_capital_share(self, param, untransform=False):
# Capital share must be between 0 and 1
epsilon = 1e-4 # bound it slightly away from exactly 0 or 1
if not untransform:

return np.abs(1 / (1 + np.exp(param)) - epsilon)
else:

return np.log((1 - param + epsilon) / (param + epsilon))

def transform_technology_shock_persistence(self, param, untransform=False):
# Persistence parameter must be between -1 and 1
if not untransform:

return param / (1 + np.abs(param))
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else:
return param / (1 - param)

def transform_technology_shock_var(self, unconstrained, untransform=False):
# Variances must be positive
return unconstrained**2 if not untransform else unconstrained**0.5

def transform_params(self, unconstrained):
constrained = np.zeros(unconstrained.shape, unconstrained.dtype)

i = 0
for param in self.parameters.keys():

if param not in self.calibrated:
method = getattr(self, 'transform_%s' % param)
constrained[i] = method(unconstrained[i])
i += 1

# Measurement error variances must be positive
constrained[self.k_estimated:] = unconstrained[self.k_estimated:]**2

return constrained

def untransform_params(self, constrained):
unconstrained = np.zeros(constrained.shape, constrained.dtype)

i = 0
for param in self.parameters.keys():

if param not in self.calibrated:
method = getattr(self, 'transform_%s' % param)
unconstrained[i] = method(constrained[i], untransform=True)
i += 1

# Measurement error variances must be positive
unconstrained[self.k_estimated:] = constrained[self.k_estimated:]**0.5

return unconstrained

def update(self, params, **kwargs):
params = super(SimpleRBC, self).update(params, **kwargs)

# Reconstruct the full parameter vector from the
# estimated and calibrated parameters
structural_params = np.zeros(self.k_params, dtype=params.dtype)
structural_params[self.idx_calibrated] = self.calibrated.values()
structural_params[self.idx_estimated] = params[:self.k_estimated]
measurement_variances = params[self.k_estimated:]

# Solve the model
design, transition = self.solve(structural_params)

# Update the statespace representation
self['design'] = design
self['obs_cov', 0, 0] = measurement_variances[0]
self['obs_cov', 1, 1] = measurement_variances[1]
self['obs_cov', 2, 2] = measurement_variances[2]
self['transition'] = transition
self['state_cov', 0, 0] = structural_params[self.idx_tech_var]

The following code estimates the three measurement variances as well as the two technology shock

parameters via maximum likelihood estimation
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# Now, estimate the discount rate and the shock parameters
partially_calibrated = {

'discount_rate': 0.95,
'disutility_labor': 3.0,
'capital_share': 0.36,
'depreciation_rate': 0.025,

}
mod = SimpleRBC(rbc_data, calibrated=partially_calibrated)
res = mod.fit(maxiter=1000)
res = mod.fit(res.params, method='nm', maxiter=1000, disp=False)
print(res.summary())

estimated_irfs = res.impulse_responses(40, orthogonalized=True) * 100

Finally, the following code estimates all parameters except the disutility of labor and the deprecia-

tion rate via the Metropolis-within-Gibbs algorithm

from scipy.stats import truncnorm, norm, invgamma

def draw_posterior_rho(model, states, sigma2, truncate=False):
Z = states[1:2, 1:]
X = states[1:2, :-1]

tmp = 1 / (sigma2 + np.sum(X**2))
post_mean = tmp * np.squeeze(np.dot(X, Z.T))
post_var = tmp * sigma2

if truncate:
lower = (-1 - post_mean) / post_var**0.5
upper = (1 - post_mean) / post_var**0.5
rvs = truncnorm(lower, upper, loc=post_mean, scale=post_var**0.5).rvs()

else:
rvs = norm(post_mean, post_var**0.5).rvs()

return rvs

def draw_posterior_sigma2(model, states, rho):
resid = states[1, 1:] - rho * states[1, :-1]
post_shape = 2.00005 + model.nobs
post_scale = 0.0100005 + np.sum(resid**2)

return invgamma(post_shape, scale=post_scale).rvs()

np.random.seed(SEED)

from statsmodels.tsa.statespace.tools import is_invertible
from scipy.stats import multivariate_normal, gamma, invgamma, beta, uniform

# Create the model for likelihood evaluation
calibrated = {

'disutility_labor': 3.0,
'depreciation_rate': 0.025,

}
model = SimpleRBC(rbc_data, calibrated=calibrated)
sim_smoother = model.simulation_smoother()

# Specify priors
prior_discount = gamma(6.25, scale=0.04)
prior_cap_share = norm(0.3, scale=0.01)
prior_meas_err = invgamma(2.0025, scale=0.10025)
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# Proposals
rw_discount = norm(scale=0.3)
rw_cap_share = norm(scale=0.01)
rw_meas_err = norm(scale=0.003)

# Create storage arrays for the traces
n_iterations = 10000
trace = np.zeros((n_iterations + 1, 7))
trace_accepts = np.zeros((n_iterations, 5))
trace[0] = model.start_params
trace[0, 0] = 100 * ((1 / trace[0, 0]) - 1)

loglike = None

# Iterations
for s in range(1, n_iterations + 1):

if s % 10000 == 0:
print s

# Get the parameters from the trace
discount_rate = 1 / (1 + (trace[s-1, 0] / 100))
capital_share = trace[s-1, 1]
rho = trace[s-1, 2]
sigma2 = trace[s-1, 3]
meas_vars = trace[s-1, 4:]**2

# 1. Gibbs step: draw the states using the simulation smoother
model.update(np.r_[discount_rate, capital_share, rho, sigma2, meas_vars])
sim_smoother.simulate()
states = sim_smoother.simulated_state[:, :-1]

# 2. Gibbs step: draw the autoregressive parameter, and apply
# rejection sampling to ensure an invertible lag polynomial
# In rare cases due to the combinations of other parameters,
# the mean of the normal posterior will be greater than one
# and it becomes difficult to draw from a normal distribution
# even with rejection sampling. In those cases we draw from a
# truncated normal.
rho = draw_posterior_rho(model, states, sigma2)
i = 0
while rho < -1 or rho > 1:

if i < 1e2:
rho = draw_posterior_rho(model, states, sigma2)

else:
rho = draw_posterior_rho(model, states, sigma2, truncate=True)

i += 1
trace[s, 2] = rho

# 3. Gibbs step: draw the variance parameter
sigma2 = draw_posterior_sigma2(model, states, rho)
trace[s, 3] = sigma2

# Calculate the loglikelihood
loglike = model.loglike(np.r_[discount_rate, capital_share, rho, sigma2, meas_vars])

# 4. Metropolis-step for the discount rate
discount_param = trace[s-1, 0]
proposal_param = discount_param + rw_discount.rvs()
proposal_rate = 1 / (1 + (proposal_param / 100))
if proposal_rate < 1:

proposal_loglike = model.loglike(np.r_[proposal_rate, capital_share, rho, sigma2, meas_
→˓vars])

acceptance_probability = np.exp(
proposal_loglike - loglike +
prior_discount.logpdf(proposal_param) -
prior_discount.logpdf(discount_param))

if acceptance_probability > uniform.rvs():
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discount_param = proposal_param
discount_rate = proposal_rate
loglike = proposal_loglike
trace_accepts[s-1, 0] = 1

trace[s, 0] = discount_param

# 5. Metropolis-step for the capital-share
proposal = capital_share + rw_cap_share.rvs()
if proposal > 0 and proposal < 1:

proposal_loglike = model.loglike(np.r_[discount_rate, proposal, rho, sigma2, meas_vars])
acceptance_probability = np.exp(

proposal_loglike - loglike +
prior_cap_share.logpdf(proposal) -
prior_cap_share.logpdf(capital_share))

if acceptance_probability > uniform.rvs():
capital_share = proposal
trace_accepts[s-1, 1] = 1
loglike = proposal_loglike

trace[s, 1] = capital_share

# 6. Metropolis-step for the measurement errors
for i in range(3):

meas_std = meas_vars[i]**0.5
proposal = meas_std + rw_meas_err.rvs()
proposal_vars = meas_vars.copy()
proposal_vars[i] = proposal**2
if proposal > 0:

proposal_loglike = model.loglike(np.r_[discount_rate, capital_share, rho, sigma2,
→˓proposal_vars])

acceptance_probability = np.exp(
proposal_loglike - loglike +
prior_meas_err.logpdf(proposal) -
prior_meas_err.logpdf(meas_std))

if acceptance_probability > uniform.rvs():
meas_std = proposal
trace_accepts[s-1, 2+i] = 1
loglike = proposal_loglike
meas_vars[i] = proposal_vars[i]

trace[s, 4+i] = meas_std
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